Differences

This shows you the differences between two versions of the page.

teaching:csci5733:2013 [2013/09/03 14:39]
admin
— (current)
Line 1: Line 1:
-====== CMSC5733 Social Computing ====== 
- [ [[:teaching:csci5733:discussions:2013|Discussion Forum]] | [[:teaching:csci5733:blogs:2013|Blogs]] ] 
-==== Breaking News ==== 
- 
-  * <hi #ffff00>**September 2, 2013**.</hi> The new semester begins. 
- 
-==== Extra Credit Assignments ==== 
- 
-===== 20013-14 Term 1 ===== 
- 
- 
-|  ^  Lecture I  ^  
-^ Time    |  Monday, 7:00 pm - 10:00 pm  |   
-^ Venue    |  HKPC 1007  |   
- 
-<html><font color="red"> <b>The Golden Rule of CSCI5733: </b></font></html> No member of the CSCI5733 community shall take unfair advantage of any other member of the CSCI5733 community. 
- 
-====== Course Description ====== 
- 
-This course introduces fundamental as well as applied computational techniques for collaborative and collective intelligence of group behaviours on the Internet. The course topics include, but are not limited to: web intelligence, web data mining, knowledge discovery on the web, web analytics, web information retrieval, learning to rank, ranking algorithms, relevance feedback, collaborative filtering, recommender systems, human/social computation, social games, opinion mining, sentiment analysis, models and theories about social networks, large graph and link-based algorithms, social marketing, monetization of the web, security/privacy issues related to web intelligence and social computing, etc. 
- 
-===== Learning Objectives ===== 
- 
-===== Learning Outcomes ===== 
- 
-Students will be able to:  
-   - provide an overview of recent developments in social computing; 
-   - explain various theories and models in social computing; 
-   - design and implement simple systems to process social data 
- 
-===== Learning Activities ===== 
-  - Lectures 
-  - Tutorials (hands-on) 
-  - Web resources 
-  - Videos 
-  - Quizzes 
-  - Examinations 
-  - Project presentations 
- 
-===== Expectations ===== 
-  * [[:teaching:student_and_faculty_expectations_on_teaching_and_learning|Expectations]] 
- 
-====== Personnel ====== 
- 
-| ^  Lecturer  ^  Tutor  ^ Tutor ^ 
-^ Name |  [[:home|Irwin King]]  |  Baichuan Li  |  Yuanyuan Man  | 
-^ Email |  king@cse.cuhk.edu.hk  |  bcli@cse.cuhk.edu.hk  |  sophiaqhsw@gmail.com  | 
-^ Office   |  Rm 908  |   |   | 
-^ Telephone   |   3943 8398   |  | | 
-^ Office Hour(s)   | * M8, Monday 3:30 pm - 4:30 pm\\ \\ * T8, Tuesday 3:30 pm - 4:30 pm  |  | | 
- 
-Note: This class will be taught in<html> <font color="red">English</font></html>. Homework assignments and examinations will be conducted in English. 
- 
-====== Syllabus ====== 
-The pdf files are created in Acrobat 6.0. Please obtain the correct version of the [[http://www.adobe.com/prodindex/acrobat/readstep.html#reader | Acrobat Reader]] from Adobe. 
- 
-^  Week  ^  Date  ^  Topics  ^  Tutorials  ^  Homework & Events  ^  Resources   ^    
-|  1  |  2/9  |  Introductions\\ \\  {{:teaching:csci5733:cmsc5733-01-introduction.pdf|Introduction.pdf}}  | | |  | 
-|  2  |  9/9  |   | | |  | 
-|  3  |  16/9  |   | | |  | 
-|  4  |   23/9  |   | | |  | 
-|  5  |   30/9  |   | | |  | 
-|  6  |   7/10  |   | | |  | 
-|  7  |   14/10  |   Public Holiday  | | |  | 
-|  8  |   21/10  |   | | |  | 
-|  9  |   28/10  |   | | |  | 
-|  10  |   4/11  |   | | |  | 
-|  11  |   11/11  |   | | |  | 
-|  12  |   18/11  |   | | |  | 
-|  13  |   25/11  |   | | |  | 
- 
-  * Web 2.0 
-    * Ajax, CSS,  
-  * Social Media 
-    * blogs, microblogs, wikis, mashup,  
- 
-====== Class Project ====== 
-===== Class Project Presentation Schedule ===== 
-  * TBA 
- 
-===== Class Project Presentation Requirements===== 
- 
-====== Examination Matters ====== 
- 
- 
-===== Examination Schedule ===== 
-|              ^        Time           ^        Venue          ^    Notes    ^ 
-^    Midterm Examination\\ TBA    |    TBA  |   TBA   |    TBA    | 
-^    Midterm Examination\\ TBA    |    TBA   |   TBA   |    TBA    | 
-^    Final Examination    |   TBA | TBA | TBA   | 
- 
- 
-  * [[http://rgsntl.rgs.cuhk.edu.hk/rws_prd_life/main1.asp|CUHK Registration and Examination]] 
- 
- 
- 
-===== Written Midterm Matters ===== 
-  - The midterm will test your knowledge of the materials. 
-  - Answer all questions using the answer booklet.  There will be more available at the venue if needed. 
-  - Write legibly.  Anything we cannot decipher will be considered incorrect. 
-  - One A4-sized cheat-sheet page. 
- 
-====== Grade Assessment Scheme ====== 
-^  Homework\\ Assignments  ^  Project Report  ^  Project Presentation  ^  Final Examination  ^ 
-|  TBA  |  TBA  |  TBA  |  TBA  | 
- 
-  -Assignments (20%)  
-    -Written assignments 
-    -Optional quizzes 
-  -Midterm Examination (30%)  
-  - Project (50%) 
-    - Report (30%) 
-    - Presentations (20%) 
-  -Extra Credit (There is no penalty for not doing the extra credit problems. Extra credit will only help you in borderline cases.) 
- 
-====== Required Background ====== 
-  - Pre-requisites 
-    -- CSC 1110 or 1130 or its equivalent. (Not for students who have taken CSC 2520).  
-====== Reference Books ====== 
- 
- 
-====== FAQ ====== 
- 
-  - **Q: What is departmental guideline for plagiarism?**\\ A: If a student is found plagiarizing, his/her case will be reported to the Department Discipline Committee. If the case is proven after deliberation, the student will automatically fail the course in which he/she committed plagiarism. The definition of plagiarism includes copying of the whole or parts of written assignments, programming exercises, reports, quiz papers, mid-term examinations. The penalty will apply to both the one who copies the work and the one whose work is being copied, unless the latter can prove his/her work has been copied unwittingly. Furthermore, inclusion of others' works or results without citation in assignments and reports is also regarded as plagiarism with similar penalty to the offender. A student caught plagiarizing during tests or examinations will be reported to the Faculty Office and appropriate disciplinary authorities for further action, in addition to failing the course. 
- 
-====== Resources ====== 
- 
-  -[[http://pajek.imfm.si/doku.php|Pajek, a network analysis and visualization program.]] 
-  -[[http://vlado.fmf.uni-lj.si/pub/networks/data/default.htm|Package for Large Network Analysis]] 
-  -[[http://www.analytictech.com/downloaduc6.htm|UCINET 6]] 
-  -[[http://www.analytictech.com/Netdraw/netdraw.htm|Netdraw]] 
-  -[[http://stat.gamma.rug.nl/stocnet/|StOCNET]] 
- 
-===== Social Networks-Theory Graph Theory ===== 
-  * http://www.cs.purdue.edu/homes/neville/courses/aaai08-tutorial.html \\ 
-  * http://cs.stanford.edu/people/jure/icml09networks/ \\ 
-  * http://www.ofcom.org.uk/advice/media_literacy/medlitpub/medlitpubrss/socialnetworking/report.pdf \\ 
- 
-===== Graph Mining ===== 
-  * http://www.cs.cmu.edu/~deepay/mywww/papers/csur06.pdf \\ 
-  * http://cs.stanford.edu/people/jure/talks/www08tutorial/ \\ 
-  * http://www.xifengyan.net/tutorial/KDD08_graph_partI.pdf \\ 
-  * http://www.xifengyan.net/tutorial/KDD08_graph_partII.pdf 
- 
-===== Link Analysis=====  
-  * http://analytics.ijs.si/events/Tutorial-TextMiningLinkAnalysis-KDD2007-SanJose-Aug2007/ \\ 
-  * http://www.sigkdd.org/explorations/issues/7-2-2005-12/1-Getoor.pdf \\ 
-  * http://www.ncjrs.gov/pdffiles1/nij/grants/219552.pdf \\ 
-  * http://delab.csd.auth.gr/~dimitris/papers/ENVO07LARskm.pdf 
- 
-===== Learning to Rank=====  
-  * http://www2009.org/pdf/T7A-LEARNING%20TO%20RANK%20TUTORIAL.pdf\\ 
-  * http://radlinski.org/papers/LearningToRank_NESCAI08.pdf\\ 
-  * http://www.aclweb.org/anthology/P/P09/P09-5005.pdf\\ 
-  * http://www.cse.iitb.ac.in/~soumen/doc/www2007/TutorialSlides.pdf 
- 
-===== Recommender Systems=====  
-  * http://en.wikipedia.org/wiki/Recommender_system 
-  * http://www.deitel.com/ResourceCenters/Web20/RecommenderSystems/RecommenderSystemsTutorialsandWebcasts/tabid/1313/Default.aspx 
-  * http://www.computer.org/portal/web/csdl/doi/10.1109/TKDE.2005.99 
-  * http://www.springerlink.com/content/n881136032u8k111/ 
-  * http://www.csd.abdn.ac.uk/~jmasthof/Publications/WPRSIUI07.pdf 
- 
-===== Q & A ===== 
-  * http://lml.bas.bg/ranlp2005/tutorials/magnini.ppt \\ 
-  * http://tcc.itc.it/research/textec/topics/question-answering/Tut-Prager.ppt \\ 
-  * http://en.wikipedia.org/wiki/Question_answering \\ 
-  * http://trec.nist.gov/pubs/trec9/papers/webclopedia.pdf \\ 
-  * http://domino.watson.ibm.com/library/CyberDig.nsf/papers/D12791EAA13BB952852575A1004A055C/$File/rc24789.pdf \\ 
-  * http://www.umiacs.umd.edu/~jimmylin/publications/Lin_Katz_EACL2003_tutorial.pdf \\ 
-  * http://answers.yahoo.com/ \\ 
-  * http://zhidao.baidu.com/ \\ 
-  * http://wenda.tianya.cn/wenda/ \\ 
-  * http://hk.knowledge.yahoo.com/ \\ 
- 
-===== Human Computation/Social Games  ===== 
-  * http://www.gwap.com/gwap/ \\ 
-  * http://www.cs.cmu.edu/~biglou/ \\ 
- 
-===== Opinion Mining/Sentiment Analysis  ===== 
-  * http://www.cs.uic.edu/~liub/FBS/opinion-mining-sentiment-analysis.pdf \\ 
-  * http://www.cs.cornell.edu/home/llee/omsa/omsa-published.pdf \\ 
-  * http://www.cs.cmu.edu/~wcohen/10-802/sentiment-sep-4.ppt \\ 
- 
-===== Visualization ===== 
-  -[[http://manyeyes.alphaworks.ibm.com/manyeyes/|Many Eyes Visualization]] 
- 
-===== Programming ===== 
-  -[[http://networkx.lanl.gov/|NetworkX, a Python package for complex networks]] 
-  -[[http://www.wolfram.com/|Mathematica from Wolfram]] 
-    -[[http://demonstrations.wolfram.com/|Wolfram Demonstrations]] 
- 
-===== Midterm Evaluation Sign-up Sheet ===== 
- 
-===== Final Project Presentation Sign-up Sheet ===== 
-  
 
teaching/csci5733/2013.1378190389.txt.gz · Last modified: 2013/09/03 14:39 by admin     Back to top