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This document serves as an additional material for CCIT4076: Engineering and Information
Sciences as offered in Fall 2022. We aim at providing necessary insights for course participants to
start their journey in using Octave as a computational tool for engineering purposes. For a proper
understanding in matrix algebra readers are referred to their course instructors in CCMA4002:
Linear Algebra.

1 Notations and Definitions

A vector: x ∈ Rn means x is a length n vector:

x =


x1
x2
...
xn

 = (x1, x2, . . . , xn)

with all entries being real-valued. A vector is a column vector unless otherwise specified. We may
use the round bracket to denote a column vector to save space. It is analogous to a 1-dimensional
array where the i-th cell is storing a real number. A matrix A ∈ Rm×n means A is a m-by-n
matrix, i.e.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 =

a1 a2 . . . an


where a1, . . . ,an ∈ Rm are n real-valued vectors in m-dimensional space. A is said to be square if
m = n. It is analogous to a 2-dimensional array where the m,n-th element is a real number.

Let us post the following examples to demonstrate what is a matrix and a vector. For instance,
we have 

1 3 5
7 9 11
13 15 17
19 21 23

 ∈ R4×3

1



being a matrix; and consequently,
1
7
13
19

 ,


3
9
15
21

 , and


5
11
17
23


are vectors of R4. We stress the fact that data are very often stored as these format. We are hence
interested to look into this topic.

Some special types of matrices are introduced as follows. We refer 0 as a zero matrix/vector
with all entries = 0; similarly, 1 is all-one matrix/vector if all its entries = 1, for instance,0

0
0

 , [0 0 0
0 0 0

]

are both denoted by 0 and 1
1
1

 ,
1 1

1 1
1 1


are both meant by 1.

Convention: We use x ≥ 0 to indicate that all the components of x are non–negative, and
x ≥ y to mean that x− y ≥ 0. The notations x > 0, x ≤ 0, x < 0, x > y, x ≤ y, and x < y are
to be interpreted accordingly. For instance, given vector a as

a =


1
7
13
19


and the condition a ≤ b. It is known that the vector b must have entries satisfying

b1 − 1 ≥ 0

b2 − 7 ≥ 0

b3 − 13 ≥ 0

b4 − 19 ≥ 0

and imaginably, there are a lot of solutions. Some of those vectors satisfying the constraints are:
1
7
13
19




4
8
14
20




1000
2000
3000
4000


Diagonal operator: We use the operator diag(x) to denote a square matrix with all zero

entries except the diagonal elements are those of x, and we can use it to extract a vector containing
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all diagonal elements from a square matrix A ∈ Rn×n:

diag(x) =


x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn

 and diag(A) =


a11
a22
...
ann


Identity matrix: Is an diagonal matrix with all it’s diagonal element fixed to 1

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 = diag




1
1
...
1


 = diag(1)

2 Basic Operators

Addition/subtraction: Given A ∈ Rm×n and B ∈ Rm×n,

A + B =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

+


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn



=


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 . . . amn + bmn


whereas A−B = A+(−B) is defined in a similar manner. Scalar multiplication: Given a scalar
term c ∈ R,

cA = c


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 =


ca11 ca12 . . . ca1n
ca21 ca22 . . . ca2n

...
...

. . .
...

cam1 cam2 . . . camn


Matrix multiplication: The product between 2 matrices is defined more strictly —it may not
always exists. Let C ∈ Rn×m , then the product

AC = m rows

{
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


︸ ︷︷ ︸

n columns


c11 c12 . . . c1m
c21 c22 . . . c2m
...

...
. . .

...
cn1 cn2 . . . cnm


︸ ︷︷ ︸

m columns

}
n rows

and the (i, j)th element of AC is defined as

[AC]ij =
n∑

k=1

aikckj
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Note that even if A,C ∈ Rn×n, AC 6= CA in general.

Let us visit a numerical example. Suppose there are three matrices

A =


−8 −4 −1
2 −6 6
−3 5 −1
0 4 3

 , B =

7 −2
1 −5
7 2

 , C =


−2 −2 2
−1 −1 −2
1 1 −1
1 0 0


It is straight forward to see that

A−C =


−6 −2 −3
3 −5 8
−4 4 0
−1 4 3

 , A + C =


−10 −6 1

1 −7 4
−2 6 −2
1 4 3

 0.3A + 0.6C =


−3.6 −2.4 0.9

0 −2.4 0.6
−0.3 2.1 −0.9
0.6 1.2 0.9


Also, it is clear that the sum A + B or C + B do not exists due to dimensional mismatch. The
same goes for all the difference. The matrix products

AB =


−67 34
50 38
−23 −21
25 −14

 , CB =


−2 18
−22 3

1 −9
7 −2


follows from the definition of matrix multiplication. Other products AC, CA, BC and BA do not
exists due to, again, mismatch in dimensionality.

Inverse matrix: For A ∈ Rn×n, if there exists B ∈ Rn×n such that

AB = BA = I

then B = A−1 is said to be the inverse matrix of A.

Matrix transposition: We define the transpose operator (.)T as follow:

AT =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


T

=


a11 a21 . . . am1

a12 a22 . . . am2
...

...
. . .

...
a1n a2n . . . amn


to put it in words, we treat the ith column of A as the ith row of AT . Note some key facts:

1. (AT )T = A

2. (A + B)T = AT + BT

3. (cA)T = cAT

4. (AB)T = BTAT
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Also, symmetric matrices satisfy A = AT ; skew-symmetric matrices satisfies A = −AT .

Symmetry: We say a matrix A is symmetric if its elements satisfy aij = aji. Similarly, A is
said to be skew-symmetric if its elements satisfy aij = −aji. As an example:

S =

[
4 7
7 4

]
=

[
4 7
7 4

]T
= ST

is symmetric, and

H =

[
0 −5
5 0

]
= −

[
0 5
−5 0

]T
= −HT

is skew-symmetric. Notably, if a matrix H is skew-symmetric, it must satisfied that

h1,1 = h2,2 = · · · = hn,n = 0.

Vector inner products: For x ∈ Rn and y ∈ Rn, their inner product (also referred as the dot
product in vector calculus classes) is defined as:

x • y = xTy =
n∑

i=1

xiyi.

– Note that when y = x, the inner product gives the sum-of-squares of x, which is the squared
2-norm1:

‖x‖22 =
n∑

i=1

x2i = xTx.

– Also, the quantity
√
xTy is also referred as the Euclidean distance between x and y. It is a

real-valued scalar that gives a measurement on the distance between the two vectors.

Let us go through another numerical example. Suppose

x =

5
7
9

 y =

−2
4
−8


their vector inner product can be computed as

xTy =
[
5 7 9

] −2
4
−8

 = (5)(−2) + (7)(4) + (9)(−8) = −54.

Similarly, the 2-norm of theses two vectors are

‖x‖2 =
√
xTx = 12.45; ‖y‖2 =

√
yTy = 9.1652

respectively.

1Here it means the squared Euclidean norm, or simply, the squared norm of the vector.
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Traditionally, vector has a more profound meaning in the physical world. Since everything we
touch in the reality is a three dimensional object, we can actually declare the whole reality as a
linear combination of the unit vectors i = [1, 0, 0]T , j = [0, 1, 0]T and k = [0, 0, 1]T , i.e. a vector

a = α1 · i + α2 · j + α3 · k

where αi ∈ R for i = 1, 2, 3 can be used to characterise a certain position vector. Below we visualise
a = [−1/2,−3, 4]T as mapped to a xyz-coordinate space.

The vector 2-norm ‖a‖2 = 5.0249 here is a scalar measuring how long is the vector a in the 3-D
space.

Vector outer products: For x ∈ Rn and y ∈ Rm, their outer product is defined as:

x⊗ y = xyT =


x1y1 x1y2 . . . x1ym
x2y1 x2y2 . . . x2ym

...
...

. . .
...

xny1 xny2 . . . xnym

 .

– x⊗ y 6= y ⊗ x in general. But x⊗ y = (y ⊗ x)T for sure.

– When x and y are of the same length, the sum of the diagonal entries of x⊗y or y⊗x will give
us the vector inner product, i.e.:

n∑
i=1

diag(x⊗ y) =

n∑
i=1

diag(y ⊗ x) = x • y
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3 Plotting Functions on Octave

Roughly speaking, a function is simply a map between the input variable and the output variable.
For the simplest example, consider a linear function

y(x) = a · x+ b (Linear Function)

where a, b are fixed coefficients that dictates the shape of the graph of x-versus-y. Let me name a
few more examples of functions as follows:

y(x) = ax2 + bx+ c (Quadratic function)

y(x) = sin(πx) (Sinusoidal function)

y(x) = A · e−`x (Exponential decay)

As a hands-on technical document, we do not delve into details of these functions but instead
we describe how do engineers compute the numerical values and have the function visualised via
computational software such as Octave.

Consider the domain of interest lies in x ∈ [0, 5]. What engineers do is to create a closely
sampled vector between the range [0, 5] as a vector, for instance:

x =



0
0.0001
0.0002
0.0003

...
4.9998
4.9999
5.0000


and incur the respective coefficients to them in obtaining another vector

y = a ·



0
0.0001
0.0002
0.0003

...
4.9998
4.9999
5.0000


+ b =



a(0) + b
a(0.0001) + b
a(0.0002) + b
a(0.0003) + b

...
a(4.9998) + b
a(4.9999) + b
a(5.0000) + b


and eventually, we can use plot(x, y) to visualise the graph of the equation y = ax + b. Such
technique allows us to plot whatever function of x in a graph.

Exercise. Try it yourself. Suppose we want to plot the function

f(x) =
1

x2
· cos(200πx)

for x ∈ [0, 1] on Octave. Assume the step size is 0.0001. Limit the y-axis to the range [−40, 40] and
the x-axis to the same range of x.
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