
JSISOLATE: Lightweight In-Browser JavaScript Isolation

Mingxue Zhang
Chinese University of Hong Kong

Hong Kong SAR, China
mxzhang@cse.cuhk.edu.hk

Wei Meng
Chinese University of Hong Kong

Hong Kong SAR, China
wei@cse.cuhk.edu.hk

ABSTRACT

Modern web applications commonly include third-party scripts

from external hosts. While enabling code reuse and enhancing the

functionalities, the reliability of client-side JavaScript code can be

impaired by the inclusion of other scripts. Since all scripts run in

the same execution environment in the browser, executing them

all together may cause unexpected effects. For example, global

variables with the same name might be defined by multiple scripts,

causing the actual value to be unpredictable.

In this paper, we design a lightweight browser-based framework,

JSIsolate, that provides an isolated and reliable JavaScript execu-

tion environment. JSIsolate injects scripts into different isolated

environments based on their dependency relationship. In this way,

it executes scripts with independent functionalities in different con-

texts, effectively preventing them from interfering with each other.

We further evaluated the compatibility and performance overhead

of JSIsolate on Alexa top 1K websites, and showed that it can

efficiently isolate scripts while preserving the functionalities.

CCS CONCEPTS

· Software and its engineering → Software organization and

properties; Software reliability.

KEYWORDS

JavaScript; Script isolation; Web browser

ACM Reference Format:

Mingxue Zhang and Wei Meng. 2021. JSISOLATE: Lightweight In-Browser

JavaScript Isolation. In Proceedings of the 29th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engi-

neering (ESEC/FSE ’21), August 23ś28, 2021, Athens, Greece. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3468264.3468577

1 INTRODUCTION

It is a common practice in developing web applications to include

scripts from different hosts. A recent study of Alexa top 75K web-

sites shows that external scripts are prevalent, with a median num-

ber of 9 and the maximum number of 202 per site [15]. Over 90% of

the websites include at least one external script. Including scripts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468577

from third-party hosts allows a developer to reuse the code in third-

party libraries. For example, a developer can include a third-party

jQuery script to facilitate DOM traversing and manipulation.

Unfortunately, including multiple external scripts together may

cause undesired effects. In the browser, all the scripts in the same

frame (e.g., the main frame) run in a shared environment. This

means any script can interfere with the execution of other scripts

in the same frame. Existing works have revealed that name conflicts

could exist between JavaScript libraries and any normal scripts, and

are prevalent on the web [24, 44, 45]. Builtin methods and properties

could also be overriden and affect the default behaviors of all scripts

[2]. Meanwhile, some sensitive data could be stored at the client side

and can be accessed and modified by any included script. Executing

scripts from different parties in the same context could significantly

affect the functionalities hence the reliability of web applications.

Priorworks have investigated the problem of protecting JavaScript

code integrity by isolating the namespace, i.e., execution environ-

ment, of scripts. In [10, 13, 19, 33, 42], the authors sandboxed un-

trusted third-party scripts in iframes, preventing them from access-

ing objects in themain frame. However, as the iframes use a separate

DOM from the embedding page, special care must be taken to han-

dle the rendering of contents generated by the sandboxed scripts.

Also, the events from the embedding page must be specifically for-

warded to the iframes. They therefore introduced a high latency

in page rendering. Another branch of research works emulated

an isolated execution environment by restricting the accesses to

objects defined by first-party scripts from untrusted scripts [3, 23].

They rely on a runtime access monitor, which incurs a significant

overhead on the basic operations like function invocation.

In this paper, we aim to design a lightweight mechanism that pro-

vides an isolated JavaScript execution environment in the browser,

to prevent functionality interference in mashups. We face the fol-

lowing challenges. First, scripts included on the same page may be

functionally dependent. We need to carefully determine the execu-

tion environment for each script to maintain the functionalities. Sec-

ond, JavaScript code can be dynamically included in various ways,

for example, through JavaScript URLs, eval(), or asynchronously

invoked as event listeners. The event listeners and JavaScript URLs

can be defined as attributes of DOM elements, which can also be

dynamically modified by JavaScript. It is non-trivial to capture all

the dynamically included scripts and isolate them in an appropriate

environment. Finally, in order to make our scheme deployable and

practical, we need to minimize the performance overhead and the

required modification to applications, which is challenging.

To overcome the above challenges, we develop JSIsolate, a light-

weight browser-based isolated JavaScript execution framework for

improving script reliabilities. It operates in two modes: a dynamic

script-dependency analysis mode, and a policy enforcement mode

193

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3468264.3468577
https://doi.org/10.1145/3468264.3468577

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Mingxue Zhang and Wei Meng

that separates JavaScript in isolated execution environments (con-

texts) to provide higher reliability.

In the first mode, JSIsolate analyzes the dependency relation-

ship between scripts. It first uses an open-source domain relation-

ship list as the ground truth of script dependencies. It then dynami-

cally mediates all script accesses to JavaScript objects to infer the

dependency between scripts not on the list. Based on the depen-

dency analysis, it automatically generates policies that specify the

execution context for each statically included third-party script. It

also generates auxiliary information to help the developers validate

the isolation policies. JSIsolate can generate two types of isolation

policies: domain-level policies, where scripts of the same domain

are assigned the same context for easy management; and URL-level

policies, where each script identified by its URL is assigned a context

for fine-grained isolation.

In the second mode, for each group of functionality-dependent

scripts, JSIsolate spawns an isolated execution environmentÐthe

isolated world, which has been used to confine content scripts

of browser extensions. It also tracks the dynamic inclusion of

JavaScript code to identify the initiator script of each dynamically

included script, which would be executed in the same context as

the initiator script. This prevents an isolated script from escaping

its execution environment by dynamically injecting new scripts.

The isolation is seamlessly and securely performed without the

overhead of intercepting each JS object access.

We implemented a prototype of JSIsolate based on the Chromium

browser version 71, and tested it on Alexa top 1K websites. We will

release the prototype as an open-source software. We demonstrate

with real world and synthetic examples that JSIsolate is able to sep-

arate functionality-independent JavaScript code. We further show

JSIsolate can isolate scripts while preserving the intended function-

alities of real world websitesśusing URL-level (resp. domain-level)

policies, script isolation caused exceptions on 1 (resp. 0) out of the

top 100 websites. JSIsolate also introduces limited performance

overhead. Using URL-level policies, we observed a 1.91% average

increase in memory consumption and a 7.95% average slowdown on

page loading. When using domain-level policies, the average mem-

ory and page loading overhead is 1.34% and 6.66%, respectively. The

results show that JSIsolate can effectively and efficiently provide a

reliable execution environment for client-side JavaScript.

In summary, we make the following contributions.

• We design and develop JSIsolate, a light-weight isolated

JavaScript execution framework for improving the reliability

of client-side JavaScript.

• We systematically analyze the dependency relationship be-

tween scripts on the Alexa top 1K websites. The analysis

results show the feasibility of isolating scripts in separate

execution environments.

• We evaluate the effectiveness, compatibility and the perfor-

mance overhead of JSIsolate on real world websites, and

demonstrate the practicality of our design.

2 OVERVIEW

In this section, we first introduce the background knowledge (ğ2.1),

we then describe the motivating examples of our design (ğ2.2), and

finally discuss the research challenges (ğ2.3).

Main Frame

postMessageScript A

DOM #1

Script B

Context #3

Context #1 Context #2

Script C Script D

DOM #2

Figure 1: A simplified browser architecture.

2.1 Background

JavaScript Execution Environment in the Browser. The high-

level architecture of aweb browser is depicted in Figure 1. Inmodern

web browsers, a browsing context is created for each opened tab,

and can be nested using iframes [39]. Each frame (the main frame or

an iframe) has its own window object, and the cross-window com-

munication is usually accomplished via the postMessage interface.

The browsing context encloses the web content to be displayed to

the users. It also includes a JavaScript execution environment, in

which JavaScript code is interpreted and executed on a JavaScript

engine. Scripts included in the same frame run in a single execution

context. As a result, a script can access any global object defined

by another script that resides in the same frame.

Security Policies in the Browser. The Same-origin Policy (SOP)

[40] specifies that a frame in one origin should not be allowed to

access the resources in a different origin, which is recognized as a

tuple of scheme (e.g., https://), host name (e.g., xyz.com) and port

number (e.g., 443). It prevents cross-frame script access, but still

permits intra-frame script access or interference. The Cross-origin

resource sharing (CORS) relaxes the SOP by allowing a restricted

set of resources from one origin to be accessed by another origin

[38]. It enables the developers to embed cross-origin resources, e.g.,

images and videos, in a more flexible way.

The Content Security Policy (CSP) allows developers to specify

the origins of resources that are permitted to be loaded on a website

[37]. It is designed to mitigate the cross-site scripting (XSS) attacks

and other content injection attacks. However, it has suffered from

misconfiguration of developers and its static nature, and therefore

receives only a low adoption rate on the web [5, 6]. Compared with

CSP, script isolation provides a more flexible approach to limiting

privileges of scripts to interfere with each other.

The Subresource Integrity (SRI) [41] was introduced as a W3C

recommendation to protect data integrity during the network trans-

mission. A developer can specify an integrity attribute, which

is a cryptographic hash value, with an external resource such as

a script or a style sheet. The browser, upon fetching the resource,

would then validate the hash value to ensure the resource has not

been tampered with. However, the SRI cannot protect JavaScript

objects from being overwritten by other scripts already running in

the same frame.

2.2 Motivating Examples

Global Identifier Conflicts. The use of a shared namespace

grants scripts the privilege to redefine global objects (i.e., functions

or variables) defined by other scripts. Such an overwrite could result

194

JSISOLATE: Lightweight In-Browser JavaScript Isolation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

1 /* ocanvas.js */

2 (function(a, b, c) { a.logs = []; //array })(window, document);

3
4 /* aframe.js */

5 window.logs = function(e) {...}; // function

6
7 /* client.js */

8 logs.push('log'); // runtime TypeError

Listing 1: An example of conflicting variable definitions

between JavaScript libraries.

1 /* a.js */

2 RegExp.prototype.test = function() { return true; }

3
4 /* client.js */

5 if((/https?:/i).test(...)) { // security check evaded }

Listing 2: Polluting JavaScript prototype to bypass security

checks.

in disruptive behaviors, consequently impairing the reliability of

web applications. One such case is discussed in [24], where two

JavaScript libraries define window.logs with values of different

types. As shown in Listing 1, when these libraries are included in

a specific order, a runtime exception would be thrown because of

inconsistent types. Similar examples are also presented in [44], e.g.,

the global function addHTML() is defined differently by two scripts,

which causes different HTML contents to be injected.

Prototype Poisoning Attacks. Each JavaScript object has an

associated prototype object, from which it inherits its properties

and methods. JavaScript prototype allows developers to easily de-

fine properties and methods on all the objects initiated from the

same constructor. However, it can also be overwritten and cause

undesired effects. One such vulnerability was reported on MyVi-

doop, which is a bookmarklet-based password manager [2]. As

shown in Listing 2, MyVidoop uses a simple regular expression

/https?:/i to check if a URL starts with ‘http’ or ‘https’. However,

the regular expression is evaluated at the client side, and therefore

is subject to prototype poisoning attacks. Once the native function

RegExp.prototype.test() is overriden as shown, the security

check would be bypassed and make the bookmarklet susceptible

to XSS attacks. This demonstrates the unexpected interference

between first-party and third-party code makes it hard for web

applications to reliably perform the intended functionalities.

The root cause of the above problems is the use of a single context

(i.e., namespace) in the browser. Any (not necessarily malicious)

script can potentially interfere with the execution of all other scripts

executed in the same context. This indicates the need of an isolation

mechanism that runs scripts with independent functionalities in

separate contexts, such that scripts cannot interfere with the objects

and code in the other execution environments.

2.3 Research Challenges

We face the following challenges in isolating client-side scripts.

Context Assignment. Scripts included in the same frame usually

depend on each other to accomplish their tasks. For example, a

script may call jQuery methods to facilitate DOM manipulation

and event handling. It is non-trivial to determine the context in

which a script should be executed. Separating scripts depending on

each other would break the functionality of a website. In particular,

some scripts, e.g., library scripts, might be required for multiple

https://www.example.com

https://www.example.com

Dependency

Analysis

Script A: write, foo

Script B: read, bar

<script> foo = 1; </script>

<script> if (bar) ... </script>

Global Context

<script>
foo = 1;

</script>

Context #1

Script A: context #1

Script B: context #2

Domain

Relationship

List

Context #2

<script>

 if(bar) ...

</script>

Figure 2: Overview of JSIsolate.

functionalities.We need a way to precisely assign scripts to appro-

priate contexts. Further, JavaScript code can be dynamically loaded.

It is insufficient to statically determine the context for each script.

Coverage. There are many ways to execute JavaScript code in

the browser. Except for the inline and external scripts included

via <script> tags, JavaScript code can also be loaded through

JavaScript URLs, inline event handlers and the eval() function,

etc. For example, when a user clicks on an anchor element , the method window.alert() will

be invoked. In order to capture and isolate all the code executed

in the browser, we need to cover all the above cases, which is dif-

ficult. JavaScript URLs can be defined with various types of DOM

elements, which could also be dynamically created by other scripts.

Similarly, the inline event handlers can be registered and modi-

fied by multiple scripts. Therefore, we need to precisely track the

creation and modification of any JavaScript code.

Deployability. Many existing works (e.g., [19, 33, 42]) sandbox

scripts in iframes to provide an isolated execution environment.

These mechanisms require many modifications to the original page,

and extra effortsmust bemade to handle the cross-frame interaction,

especially on event forwarding and content rendering. We aim to

develop a system that requires minimal changes on the web pages

and minimizes the performance overhead to lower the deployment

difficulty, which is challenging.

3 DESIGN AND METHODOLOGY

In this section, we present JSIsolate, a browser-based framework

that isolates scripts in separate execution contexts. We consider in

our design two execution contexts: a first-party context for scripts

serving first-party functionalities, and a third-party context for

scripts providing other independent functionalities. Nevertheless,

more contexts can be created for providing a finer-grained isolation

mechanism when feasible. We assume that scripts from different

entities are not related and shall be separated. The overview of

JSIsolate is depicted in Figure 2.

JSIsolate determines the execution contexts of scripts based

on their dependency relationship. A domain relationship list that

groups domains belonging to the same entity, is used as the ground

195

https://github.com/disconnectme/disconnect-tracking-protection/blob/master/entities.json

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Mingxue Zhang and Wei Meng

truth. It is maintained by Disconnect [25], which is a tracker block-

ing application. For instance, facebook.com and fb.me are both in

group łFacebookž. JSIsolate considers two situations when han-

dling context assignment for a script. First, both the script domain

and the website domain are on this list. If the script and the website

are in the same group, it is executed in the first-party context; else

if it is statically included, it is isolated in the third-party context to

prevent cross-entity interference; otherwise, it is assigned to the

context of its initiator script. Second, the website/script domain

is not on the list, i.e., the ground truth is unavailable. JSIsolate

analyzes the object dependency between a statically included third-

party script with the first-party scripts and assigns the context

accordingly; and executes a dynamically included third-party script

in the same context as the initiator script. With such a strategy,

JSIsolate allows the dependent scripts (including the dynamically

loaded ones) to function correctly, while prohibiting cross-context

interference through dynamic script inclusion.

In the following, we describe our design using the Chromium

browser as an example. Specifically, we showhow JSIsolate records

JavaScript object accesses to analyze dependency (ğ3.1), and how

it tracks the dynamic inclusion of a script (ğ3.2). We then describe

our methodology to generate the isolation policies (ğ3.3). Finally,

we demonstrate how JSIsolate creates separate execution contexts

based on the policies (ğ3.4).

3.1 Recording JavaScript Object Accesses

Reading and writing objects (i.e., functions and variables) defined

in each other is the most explicit evidence of the dependency rela-

tionship between scripts. For instance, a script relying on a cookie-

management library script to add/remove cookies would usually

call (i.e., read) cookie-related functions defined in the library script.

JSIsolate aims to record any access to the objects defined by any

script to determine the dependency relationship.

In the Chromium V8 JavaScript engine, every JavaScript object

is represented as an instance of the Object class, which could have

multiple properties. For instance, a global function foo is repre-

sented as window.foo, which is a property of the window object.

Therefore, to intercept all the accesses to objects, JSIsolate moni-

tors the getter and setter methods of the Object properties in V8,

from which it can get the names of objects and properties being ac-

cessed. However, variables of non-primitive type are copied/passed

by reference in JavaScript, thus scripts do not necessarily need to

access an object using the same name. For example, objY = objX

makes variable objY an alias of object objX, and any script can

thereafter access objX via objY. In particular, the keyword this in

JavaScript points to different objects when used in different scopes.

For example, when accessed in an object method, this refers to the

owner object, and when used in a normal function scope, it points

to the global object window. JSIsolate uses the memory address of

the accessed object in V8 to uniquely identify an object. As long as

an identifier points to the same object, the memory address will be

the same, regardless of the variable name being used.

For each write operation to an object property, which is accom-

plished by invoking the setter method, JSIsolate also records the

value to be assigned to the property. Once an access to an object

is intercepted, it further inspects the current JavaScript call stack

to locate the bottom script as the script that initiates the access.

JSIsolate records the scriptID of a script as its unique identifier.

Note that the declaration of a global function or variable is also

represented as a write operation to the global object window. There-

fore, JSIsolate is able to capture all the declarations and write

operations to the objects that might be referenced by other scripts.

For read operations, however, JSIsolate records the read to ob-

jects but not the read to their named properties. We make this

design choice to mitigate the prototype poisoning attacks. If a

script overwrites a prototype object, e.g., by adding new properties

or overwriting builtin methods that are later accessed by another

script, JSIsolate does not record the read to the overwritten prop-

erties/methods; otherwise, the two scripts would be considered as

dependent, allowing the prototype to be poisoned. For example,

when owner.property is being read by script A, JSIsolate only logs

a read to owner. This does not affect our ability in capturing object

dependencies between scripts. We will demonstrate the details with

our dependency analysis in ğ3.3.

3.2 Tracking Dynamic Script Inclusion

There are many ways to include JavaScript code in a web page. First,

a script can be loaded via <script> tags, either as an inline (embed-

ded as part of the HTML code) or an external (loaded from an exter-

nal JavaScript file) script. The <script> tags can also be dynamically

created by other scripts via document.createElement("script"),

etc. Second, JavaScript code can be defined as an attribute of a DOM

element, e.g., as a JavaScript URL or an event handler. In both cases,

the attribute can be modified by JavaScript after creation. In addi-

tion, by calling eval(), a string will be executed as JavaScript code.

We need to handle all the possible cases that JavaScript code can

be loaded in a web page.

3.2.1 HTML Script Elements. A script can create new <script>

elements by calling APIs like document.createElement("script")

and document.write("<script src=...></script>"), or directly

setting the outerHTML attribute of an existing element to replace

it with a script element. Alternatively, a script can also inject new

script tags via innerHTML, e.g., by replacing the inner content of a

<div> element with "<script>...</script>".

JSIsolate monitors all the above APIs in the browser to find the

script that creates a script element. Each time such an API is called,

JSIsolate locates the script that initiates the API call at the bottom

JavaScript call stack frame, and records the corresponding scriptID

as its unique identifier. JSIsolate also intercepts any access to the

outerHTML and innerHTML attributes to track the replacement of ex-

isting elements. The parentScriptID attributeÐthat is initialized as

nullÐof a dynamically created script element is set as the scriptID

of the initiator script. In this way, it can attribute the dynamic cre-

ation of any <script> element to a specific script. This allows us

to differentiate between script elements created dynamically and

those inserted statically by developers.

3.2.2 JavaScript URLs. In the browser, JavaScript URLs could be

defined with multiple types of DOM elements. We list the tagnames

and the corresponding attributes in Table 1. These attributes can

be statically defined by the web developers, or dynamically defined

and modified by scripts. For example, a script can modify the href

196

facebook.com
fb.me

JSISOLATE: Lightweight In-Browser JavaScript Isolation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

1 // #1: modifying on-event attribute

2 a.onclick = function() { console.log('clicked'); }

3
4 // #2: calling addEventListener()

5 a.addEventListener('click', function() {console.log('clicked')

;})

6
7 // #3: creating elements with an inline event listener

8 document.write('');

Listing 3: 3 ways to register event listeners on an element.

attribute of an anchor element in various ways. Firstly, a script sets

the href attribute of an anchor element a to a JavaScript URL by

calling a.setAttribute(‘href’, ‘javascript:url’). A script can

also assign a new value to href through a.href=‘javascript:url’

or a.attributes[‘href’]=‘javascript:url’. Moreover, a script

can directly create a new anchor element with a href attribute in

the same way as it creates script elements.

JSIsolate hooks all the DOM APIs that could be used to modify

the attributes in Table 1. Specifically, it assigns an nid attribute as a

unique ID to each DOM element. Every time an invocation to these

APIs is intercepted, it checks if the attribute value is a JavaScript

URL. If so, it identifies the scriptID of the accessing script, and

updates a map from nid to scriptID to keep track of the script

that last modifies the corresponding attribute of a DOM element.

The dynamic creation of elements in Table 1 are monitored in the

same way as described in ğ3.2.1. JSIsolate specifically records the

scriptID as the initiator attribute of these DOM elements. When

any of these elements is created, JSIsolate records the nid and

initiator in the map if the attribute is a JavaScript URL.

3.2.3 eval(). In JavaScript, eval() is a commonly used function

that evaluates the argument string as JavaScript code. The code

generated by eval() is granted the same privilege as the caller

function, thus can also overwrite other scripts. Fortunately, the

code generated by eval() is intrinsically executed in the same

context as the caller script. Therefore, a script cannot escape the

context assigned to it by generating new code via eval().

3.2.4 JavaScript Event Listeners. Instead of calling eval() and creat-

ing/modifying <script> tags and JavaScript URLs, a script can also

register an event listener on an HTML element to introduce new

JavaScript code. The event listener is a JavaScript code snippet that

will be executed when the corresponding event is fired. Specifically,

a script can register an event listener by: 1) modifying the on-event

attributes of a DOM element; 2) calling the addEventListener()

API to add a new event listener; or 3) directly creating an element

with an inline event listener (see Listing 3). Fortunately, JSIsolate

does not need to monitor JavaScript event listeners specifically,

because they are registered in the same JavaScript execution envi-

ronment as the scripts register them in Chromium.

3.3 Generating Isolation Policies

In this section, we describe our method to determine the object

dependency between scripts and generate script isolation policies

according to the object dependency.

3.3.1 Object Dependency. JSIsolate identifies dependent scripts

based on the JavaScript object access logs. There are four possibili-

ties that two scripts can read or write the same object.

• Read after write (RAW): one script writes an object and another

script reads it afterwards.

• Read after read (RAR): one script reads an object and another

script also reads it afterwards.

• Write after write (WAW): one script writes an object and after

that, another script also writes it.

• Write after read (WAR): one script reads an object and after

that, another script writes it.

We consider a script depends on another if we detect a RAW

condition. The RAR and WAR conditions, however, do not neces-

sarily suggest direct object dependency, although the scripts are

also accessing the same object. For example, suppose script A reads

an object after script B reads it. In this case, both scripts directly

depend on another script C that defines or declares that object.

Further, theWAW condition indicates a conflicting write that could

impair the code reliability. JSIsolate reports any detected conflicts

to the developers to help them adjust the generated script isolation

policies when necessary.

Recall that JSIsolate does not record reads to named object prop-

erties, which still allows it to capture all dependencies. First, when

there is a RAW on an object, JSIsolate can capture the dependency

as it records all the reads and writes to objects. Second, when there

is a RAW on a named property (e.g., A reads a property written by

B), both A and B have to firstly get a reference to the owner object.

If the owner object is defined by B, there is a RAW on the owner

object where A reads B; if the owner object is defined by another

script C, both A and B will be considered as dependent on C as they

both read an object defined by C. In a prototype poisoning attack,

however, the prototype object is not explicitly defined by any script

thus no dependency will be captured. Therefore, the attack can be

mitigated as the poisoned prototype can be isolated.

3.3.2 Context Assignment. To determine the context of a script,

we first classify scripts into three categories based on how they are

loaded in a web page:

• First-party scripts: scripts that are included from the first-party

domain, including inline scripts written by the developer;

• Static third-party scripts: scripts that are statically included

from a third-party domain;

• Dynamic third-party scripts: third-party scripts that are dy-

namically included by another script.

We assume that the first-party scripts serve the first-party func-

tionalities. We determine the context of a static third-party script

based on the ground truth domain relationship list and whether its

functionality relates to first-party functionalities. The static third-

party scripts can be further divided into three classes: 1) scripts

loaded from domains belonging to the first-party entity; 2) scripts

that read or are read by first-party scripts; 3) scripts that do not have

object dependency with first-party scripts. Scripts of the first two

classes are functionality-dependent with first-party scripts and are

put in the first-party context. The dependency is transitive, there-

fore, a third-class script that has dependency with a script in the

first two classes is also executed in the first-party context. The rest

statically included scripts shall be executed in a separate context,

as their functionalities are independent from the first-party ones.

A static third-party script could intentionally read objects de-

fined by a first-party script to get its way into the first-party context.

197

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Mingxue Zhang and Wei Meng

Table 1: DOM attributes that could include JavaScript URLs.

Tagname Attribute Example Invoke Condition

anchor href Click
area href <area shape="rect" coords="0,0,82,126" href=’javascript:alert("area clicked")’> Click
button formaction <button formaction=’javascript:alert("button clicked")’>Click</button> Click
form action <form action=’javascript:alert("form submitted")’ method=’get’> Submit
iframe src <iframe src=’javascript:alert("iframe loaded")’></iframe> Load
input formaction <input type=’submit’ formaction=’javascript:alert("input clicked")’/> Click

Consequently, not only the static script itself but also any dynamic

script it includes would be capable to make arbitrary access to the

first-party objects. Nevertheless, it is very difficult, if possible, to

exclude these intentional accesses without the knowledge of the

intended functionalities of each script. Therefore, we rely on the de-

velopers to validate and adjust the context assigned to static scripts.

To do that, we also summarize the cross-script reads that lead to the

context assignments. This helps the developers with the validation,

which is described at length in ğ3.3.3. We will demonstrate in ğ5.3

that the number of scripts that need a manual inspection is limited,

and they make a moderate number of cross-script reads. Therefore,

it is practical for the developers to validate the isolation policies to

prevent such scripts from being executed in the first-party context.

In order to prevent scripts from escaping its context by dynam-

ically injecting other scripts, we execute the dynamic third-party

scripts in the same context as the script that creates them, unless

the dynamic scripts are loaded from a domain that belongs to the

first-party entity. In particular, JavaScript URLs are executed in the

context where the scripts that last set them are executed.

JSIsolatemaintains a contextid attribute with every script in a

web page, which is a unique ID of the context assigned to the script.

By default, the scripts are divided into two groups, with a contextid

of ł1ž for scripts implementing first-party functionalities and ł3ž

for the other scripts. In the following, a context with contextid of

ł1ž and ł3ž are called a first-party context and third-party context,

respectively. One special case is library scripts, e.g., jQuery, which

might define objects that are read by scripts in both contexts. In or-

der to preserve the functionalities of such library scripts, JSIsolate

in particular sets the contextid attribute of them as łbothž. It then

loads a copy of these scripts in both the first-party and third-party

contexts. Note that the developers can also configure the isolation

policies to separate scripts in a finer-grained manner.

An example. Consider the HTML page in Listing 4, which con-

tains an anchor element and three statically included scripts. In the

following, we call the scripts A (L4), B (L5) and C (L6), respectively.

Script B depends on script A, as B calls function myFunc defined by

A in line 11. Therefore, A shall be executed in the same context as

B, which is a first-party script. Script A also creates another script

D in line 12, which will be executed in the same context as A. Script

B and C both modify the href attribute of the anchor element by

assigning different JavaScript URLs to it. As script C is the one that

last modifies the attribute, the JavaScript URL shall be executed in

the same context as C. Similarly, the click event listener registered

by script C in line 22 shall be executed in the same context as C. In

summary, the context assigned to each script is as follows.

• First-party context: script A, B and D.

• Third-party context: script C, JavaScript URL in line 20 and event

listener in line 22.

1 <html>

2 <body>

3 Click Me

4 <script src='https://www.lib-1.com/a.js'></script>

5 <script src='https://www.example.com/b.js'></script>

6 <script src='https://www.lib-2.com/c.js'></script>

7 </body>

8 </html>

9
10 /* a.js */

11 function myFunc() { return {}; }

12 document.write("<script>alert(\"new script\");<\/script>");

13
14 /* b.js */

15 var myObj = myFunc();

16 document.getElementById("anchor1").href = 'javascript:alert("

second script")';

17
18 /* c.js */

19 var myAnchor = document.getElementById("anchor1");

20 myAnchor.href = 'javascript:alert("third script")';

21 myAnchor.click();

22 myAnchor.onclick = function() {alert('event listener')};

23 myAnchor.click();

Listing 4: HTML page https://www.example.com.

Note that we do not generate policies for script D, the JavaScript

URL and the event listener in the above example, as they are gener-

ated on-the-fly by script A and C. Rather, the dynamic creation of

these script code are tracked by JSIsolate, which will determine

the context for them according to the initiator scripts.

3.3.3 Isolation Policies. JSIsolate creates an isolation policy for a

web page based on the previous dependency analysis. Once final-

ized, the policy can be sent with the page source HTML code (e.g.,

like the CSP header) to instruct the browser to enforce the policy.

In addition to the context assigned to each script, JSIsolate also in-

cludes in the policies necessary auxiliary information, which helps

the developers understand and adjust the policies. In the following,

we describe the auxiliary information we report in the policies.

To facilitate the interpretation and enforcement of isolation poli-

cies, for each statically included third-party script, JSIsolate re-

ports in the policy its script source URL and the corresponding

contextid. At enforcement time, JSIsolatewill then determine the

context for each third-party script by matching the URL. However,

the script source URL might contain random strings, which could

change frequently. For example, website https://chaturbate.com in-

cludes multiple scripts from ssl-ccstatic.highwebmedia.com, which

have almost the same URLs except for a random suffix. In order to

fix this, JSIsolate also performs an approximate match on script

URLs, which we describe in ğ4. Meanwhile, as statically included

inline scripts are all by default considered as first-party scripts,

JSIsolate does not include them in the isolation policies but di-

rectly executes them in the first-party context. Note that a web page

may contain multiple frames, i.e., a main frame andmultiple iframes.

A script might be included in both the main frame and iframes, and

could be assigned different contexts in different frames. In order

198

https://chaturbate.com
ssl-ccstatic.highwebmedia.com

JSISOLATE: Lightweight In-Browser JavaScript Isolation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

1 {

2 "https://www.example.com": [

3 {

4 "match": "https://www.lib-1.com/a.js",

5 "context": "1",

6 "read": [],

7 "read by": [["myFunc", "B"]],

8 "ID": "A"

9 },

10 {

11 "match": "https://www.example.com/b.js",

12 "context": "1",

13 "read": [],

14 "read by": [],

15 "ID": "B"

16 },

17 {

18 "match": "https://www.lib-2.com/c.js",

19 "context": "3",

20 "read": [],

21 "read by": [],

22 "ID": "C"

23 }

24]

25 }

Listing 5: Isolation policy of https://www.example.com.

to distinguish the scripts included in different frames, JSIsolate

further groups the policies based on the URL of the frame in which

the scripts are included. We also perform an approximate match on

frame URLs, as they may contain random strings. Details are in ğ4.

To help the developers understand and adjust the isolation poli-

cies, JSIsolate further includes a list of read operations that lead to

the decision of the context for static third-party scripts. Each read

operation is represented as a read target and the unique ID of the

script that defines the read target.

Listing 5 presents the isolation policy generated for scripts A,

B and C in Listing 4. We include script B here to demonstrate the

auxiliary information generated for web developers. In practice, we

do not generate policies for static first-party scripts as they are all

executed in the first-party context.

3.4 Creating Isolation Environments

JSIsolate leverages the isolated worlds in the Chromium browser

to isolate JavaScript in separate contexts. In order to isolate con-

tent scripts from browser extensions, Chromium executes content

scripts from each extension in an isolated world, while the normal

scripts fetched from the web are executed in the main world. The

isolated world is a concept in V8 binding and is used to isolate

the global variable scopes and DOM wrappers for each extension.

Scripts in an isolated world use a separate variable scope and pro-

totype chain. Meanwhile, each isolated world has its own DOM

wrapper while sharing the same underlying C++ DOM object. The

event listeners registered by scripts in one isolated world will be

executed in the context of that specific world.

JSIsolate is inspired by the idea of confining content scripts

in isolated worlds. It creates an isolated world for each context

using the contextid specified in the isolation policies, and injects

the corresponding JavaScript code in the world. As the interaction

between different worlds is prohibited by the browser, the scripts in

one world cannot interfere with scripts in another world. Also, they

cannot escape their worlds by injecting other JavaScript code, e.g.,

by registering event listeners, because scripts in different worlds

work on different DOM wrappers.

4 IMPLEMENTATION

We implemented a prototype of JSIsolate in the Chromiumbrowser

(version 71.0.3578.98) using around 2K lines of C++ code. We plan

to open source our prototype implementation.

We implemented an IsolationInjectionHost object to inject

scripts in different isolated worlds. We added several custom at-

tributes (e.g., nid, initiator, parentScriptID and contextid) in

the Blink rendering engine to record the creation relationship and

the execution context assigned to each script. The custom attributes

are not exposed to V8, therefore cannot be modified by JavaScript.

We used the gremlins.js1 library to perform a monkey testing

after a full page loading. The library emulates real user visits by

performing random inputs, scrolls and clicks on a page. This allowed

us to trigger as much JavaScript code as possible and consequently

capture more dependencies in an automated yet scalable fashion.

Parsing and Enforcing Isolation Policies. Our prototype parses

a script isolation policy file when it starts to load a page. We plan

to implement a new HTTP header to enclose the isolation policies

in our future work. When parsing and rendering the HTML page,

it loads a script in an isolated world according to the policy.

JSIsolate generates script isolation policies at two granularities:

domain-level and URL-level. When using the domain-level policies,

it matches scripts using only the domain name. If any script from

one domain is assigned to the first-party context, JSIsolate loads

all scripts from that domain in the first-party context. We adopt

such an approach because scripts from the same domain are usually

written to cooperate by the same developer. As script URLs might

contain random strings, this also helps to eliminate the mismatches.

When configured to use the URL-level policies, JSIsolatematches

each static script against the policy using the whole URL. Specifi-

cally, to tackle with the random script URLs, JSIsolate matches a

script/frame in two modes, i.e., the strict and loose matching mode.

In the strict matching mode, a match is found if the URL (excluding

the fragment) of an external script/frame is present in the policy.

When no match is found, JSIsolate switches to the loose matching

mode, where it performs a character-by-character comparison un-

der the constraint that the domain names should be the same. The

upper bound of different character ratio in script/frame URLs was

selected as 0.15, which was determined based on our experiments

on real-world websites. Nevertheless, the developers or users can

configure a different threshold.

Developers could configure JSIsolate to enforce policies in ei-

ther level according to their preferences. We will discuss in ğ5 how

different policy granularities affect the compatibility of JSIsolate.

Note that if there is no exact or approximate match for a script,

JSIsolate assigns a fallback context for it. In ğ5.3, we will demon-

strate how different choices of fallback context affect the compati-

bility of JSIsolate on real-world websites. In some cases, JSIsolate

may fail to find a match for the embedding frame URL and therefore

cannot locate the isolation policies. JSIsolate executes all scripts in

that frame in the first-party context for compatibility concerns. In a

real deployment, the policies will be included in an HTTP response

header (see ğ6), which would avoid the mismatches on embedding

frame URLs. To accurately measure the overhead and compatibility

in our current evaluation, we disabled script isolation in iframes.

1https://github.com/marmelab/gremlins.js

199

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Mingxue Zhang and Wei Meng

Table 2: Context assignment results (#scripts / #websites) of

static third-party scripts.

w/ ground truth w/o ground truth

URL-level 12,516 / 960

3rd-party context 2,437 / 544 2,696 / 568
1st-party context 10,009 / 889 9,742 / 888
Both contexts 70 / 56 78 / 62

Domain-level 12,516 / 960

3rd-party context 1,600 / 464 1,621 / 469
1st-party context 10,879 / 889 10,858 / 888
Both contexts 37 / 33 37 / 33

Nonetheless, the developers can easily deploy JSIsolate to isolate

scripts in all frames.

5 EVALUATION

In this section, we first describe our analysis on script dependency

relationship of popular websites (ğ5.1). We then present the eval-

uation, answering the following questions: 1) Whether JSIsolate

can improve client-side JavaScript reliability (ğ5.2); 2) Whether

JSIsolate is compatible with real-world websites (ğ5.3); and 3)

What the performance overhead of JSIsolate is (ğ5.4).

5.1 Dependency Analysis

Among the Alexa top 1K website domains, 142 are present on the

domain relationship list. On these websites, if the script domain is

also on the list, JSIsolate determines execution context for it based

on the domain dependencies in the list. For the other scripts whose

domains are not on the list, JSIsolate analyzes script dependencies

as described in ğ3.3. For instance, domain yimg.com belongs to the

same entity Yahoo! as yahoo.com, but gstatic.com does not. There-

fore, script https://s.yimg.com/.../tdv2-wafer-featurebar.js was as-

signed to the first-party context onwebsite https://www.yahoo.com,

while script https://www.gstatic.com/.../firebase.js was isolated in

the third-party context.

We also used JSIsolate to collect the JavaScript object access

logs on Alexa top 1K websites for analyzing the script dependency.

Excluding inaccessible and timeouted websites, we gathered valid

log files on 978 websites. The logs and the automatically generated

isolation policies are available at https://zenodo.org/record/4892853.

In total, we observed 12,516 static third-party scripts on 960 web-

sites. We analyzed the access logs and generated URL and domain-

level isolation policies. We also compared the results with and

without the domain relationship list, and found the list helped to

identify more scripts that belong to the first-party organization on

72 (resp. 11) websites in the URL-level (resp. domain-level) policies.

For example, on website https://vimeo.com, a static script from

vimeocdn.com would be assigned to the first-party context with the

list as ground truth. We list the context assignment results of static

third-party scripts in Table 2. All static scripts from the first-party

domain are executed in the first-party context.

In Figure 3, we visualize the dependency relationship between all

statically included scripts on the website https://www.rakuten.co.jp.

Numbers in grey circles are the scriptID of static first-party scripts,

which are executed in the first-party context. The white circles rep-

resent other scripts statically included from a third-party domain.

Figure 3: Script dependency relationship on

https://www.rakuten.co.jp.

An arrow from A to B indicates some object(s) defined by B is

read by A. As shown, script 48 defined a global object googletag,

which was read by script 74 via googletag.fifWin. Specifically,

script 74 and 48 were statically included from a third-party domain

googletagservices.com and the first-party domain rakuten.co.jp, re-

spectively. In this case, script 74 and 48 were apparently dependent.

Therefore, we assigned 74 to the first-party context. In contrast,

scripts 17 and 154 were put in the third-party context because they

did not have dependency with any scripts in the first-party context.

Note that a jQuery script 25 read objects defined by script 79,

168 and 183. We believe script 25 is a customized jQuery script

that relied on other scripts to achieve its functionalities. As it was

also read by first-party scripts, JSIsolate loaded it in the first-party

context. As a result, scripts 79, 80 and 168 were also executed in the

first-party context, as they all called the jQuery function defined

by 25. Script 183 was read by both 25 and the first-party script 149.

Thus it was also executed in the first-party context.

We also detected on website https://www.tribunnews.com one

static script https://www.gstatic.com/firebasejs/5.5.6/firebase-app.

js that was read by another static script A from cdn-3.tstatic.net. As

script A read multiple objects defined in a script from the first-party

domain, we classified A as a first-party context script. Meanwhile,

script firebase-app.js was also read by multiple scripts that did

not have any functional dependency with first-party scripts. We

therefore treated these scripts as third-party scripts. Since firebase-

app.js did not read any script and was read by both first-party and

third-party scripts, we assigned a contextid of łbothž to it.

5.2 Reliability Improvement

We evaluate the effectiveness of JSIsolate in mitigating the reliabil-

ity problems described in ğ2 using several web mashup examples.

Avoiding Global Object Overwrites. For the global identifier

conflict in Listing 1, as the libraries are not expected to interact

with each other, JSIsolate naturally run them in different contexts.

Although client.js will be automatically recognized as depen-

dent on aframe.js, JSIsolate will report the conflicting writes to

developers, who have sufficient knowledge to determine whether

aframe.js shall be allowed to overwrite ocanvas.js.

Further consider the example in Listing 6, where two scripts as-

sign values of different types to the same global identifier dropdown.

As the external script redefined dropdown as a boolean value, a

200

yimg.com
yahoo.com
gstatic.com
https://s.yimg.com/.../tdv2-wafer-featurebar.js
https://www.yahoo.com
https://www.gstatic.com/.../firebase.js
https://zenodo.org/record/4892853
https://vimeo.com
vimeocdn.com
https://www.rakuten.co.jp
googletagservices.com
rakuten.co.jp
https://www.tribunnews.com
https://www.gstatic.com/firebasejs/5.5.6/firebase-app.js
https://www.gstatic.com/firebasejs/5.5.6/firebase-app.js
cdn-3.tstatic.net
firebase-app.js
firebase-app.js
firebase-app.js

JSISOLATE: Lightweight In-Browser JavaScript Isolation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

1 function dropdown() {...} // a.js

2
3 var dropdown = false; // b.js

4
5 if(dropdown()) {...} // client.js: Runtime TypeError

Listing 6: An example of conflicting variable definitions.

call to it would cause runtime exceptions and may lead to Denial-

of-Service (DoS). Similarly, given knowledge of detected conflicts,

developers may decide whether b.js should run in a separate exe-

cution context. Therefore, JSIsolate effectively avoids conflicting

definitions of global objects across different scripts, and is able to

improve the reliability. However, a script can intentionally read

first-party objects to build fake dependencies. We mitigate the risk

through developer validation of the isolation policies. Specifically,

JSIsolate reports each cross-script read operation that leads to

the context assignment of third-party scripts in the policies. The

developers thus can identify any unexpected reads and adjust the

contextids. According to our observation, in the domain-level (resp.

URL-level) policies, each page contains on average 8.07 (resp. 7.96)

static third-party scripts that have dependency relationship with

first-party scripts and are involved in read operations; each such

script is involved in on average 3.80 (resp. 3.83) read operations.

Therefore, it is practical for web developers to validate the isolation

policies as it is a one-time cost.

Mitigating Prototype Poisoning Attacks. Consider the proto-

type poisoning attack in Listing 2, where a.js reads RegExp.prototype

and thenwrites RegExp.prototype.test. After that, client.js calls

(i.e., reads) method test from RegExp.prototype. JSIsolate does

not record the read to object properties to avoid recognizing a.js

and client.js as dependent. Therefore, JSIsolate can prevent the

attack by isolating a.js in the third-party context, so that the proto-

type accessed by the first-party scripts would not be affected. In this

way, we mitigate the unexpected interference and provide a higher

level of reliability. Again, a script can deceive JSIsolate by forging

the dependencies with first-party scripts. We report any conflicting

write and read operations in each static third-party script to the

developers, who would decide whether to adjust the policies.

Similar vulnerabilities have also been discovered on other pass-

word managers, e.g., PassPack and MashedLife [2], and have been

discussed in [17]. They could be mitigated in a similar way.

5.3 Compatibility

The concern on the compatibility of JSIsolate lies in two folds: 1)

Whether JSIsolate is compatible with websites that do not enforce

script isolation; and 2) Whether JSIsolate breaks the functionality

of websites after script isolation. The answer to the first question

is obviously yes, because JSIsolate by default executes all scripts

in the same main world when no policy is explicitly specified. To

measure the compatibility with real-world websites after script

isolation, we used a Vanilla Chromium browser and our prototype

to visit Alexa top 1K websites, and recorded the runtime exceptions

separately.We enforced the default policies automatically generated

from the script dependency logs. We study how different choices of

fallback context in JSIsolate can affect the website compatibility.

To make the evaluation scalable, we opted for an automatic test-

ing approach that performs basic interaction such as page scrolling

after loading. We did not use monkey testing in the experiment as

it can randomly trigger different code (hence different exceptions)

in different runs, which makes it difficult to make a fair comparison.

We acknowledge that some exceptions might not be observed due

to incomplete code coverage. As we discuss in ğ6, this can be solved

by integrating the dependency analysis and compatibility tests in

the application regression testing process. We did manually inspect

the exceptions on top 1002 websites and identified the websites on

which we observed new exceptions after isolating scripts.

First-party Context as Fallback for URL-level Policies. We

firstly assigned a fallback contextid of ł1ž to unmatched scripts.

Out of the top 100websites, we observed on 1website new JavaScript

exceptions. With our manual analyses, the exceptions did not break

any critical functionality and all the compatibility issues could

be resolved. Specifically, website https://www.pornhub.com gener-

ated exceptions because scripts dynamically generated implicitly

depended on scripts in a different context. This shows a current

limitation of JSIsolate as it did not consider inline event listeners

and the dynamic scripts in the dependency analysis, which we will

discuss in ğ6. The exceptions could be mitigated by changing the

contextid of the third-party script from “3” to “1” or “both”. We

leave this as an option to the developer, who has sufficient infor-

mation to decide the context of scripts. The problem can also be

fixed by allowing developers to specify the related origins using

First-Party Sets [11]. More details are discussed in ğ6.

Third-party Context as Fallback for URL-level Policies. We

further tested JSIsolate by assigning a contextid of ł3ž to un-

matched scripts. Except for the above website, we observed 4 more

websites that threw exceptions after script isolation. The excep-

tions were generated because a long random string is contained

in the URL of an external script from a third-party domain, or in

the URL of the embedding iframe of the script. Although these

scripts were explicitly dependent on first-party scripts, they were

mistakenly classified as third-party scripts. For instance, the URL of

script https://static.xx.fbcdn.net/rsrc.php/v3/yg/r/..._nc_x=... con-

tained a random query string that was 11 characters long, which

made our URL match fail because the query string was updated

periodically. We could not exclude the query strings during the

matching, as a frame may include multiple scripts whose URLs

only differ in the query strings. As a result, the script from the

third-party CDN domain was misclassified as a third-party script

on website https://www.facebook.com, although it was read by

first-party scripts. Nevertheless, the exceptions did not affect other

scripts, and no critical functionality was broken. These problems

can be fixed by recollecting the logs and generating the latest iso-

lation policies. Alternatively, we could leverage mechanisms like

SRI to match the content of a script (by computing a hash value) in-

stead of only its URL. We could also perform an approximate match

on external script source code in the browser to tackle with the

random strings. In addition, as those scripts are included by the web-

site developers, they could permanently set the script contextid

attributes just once regardless of the URLs that will be used.

Domain-level Policies. When JSIsolate is deployed to enforce

domain-level isolation policies, we did not find any of the top 100

website throw more exceptions. Note that the choice of fallback

2Except for http://www.17ok.com that is inaccessible, we gathered valid data on 99
websites.

201

https://www.pornhub.com
https://static.xx.fbcdn.net/rsrc.php/v3/yg/r/..._nc_x=...
https://www.facebook.com
http://www.17ok.com

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Mingxue Zhang and Wei Meng

Table 3: Average log collection overhead on page loading.

Round Vanilla (s) JSIsolate (s) %Inc (%)

1 5.74 7.73 34.67
2 6.14 7.93 29.15
3 6.69 8.35 24.81

Table 4: Average log collection memory overhead.

Round Vanilla (MB) JSIsolate (MB) %Inc (%)

1 67.72 80.24 18.49
2 67.48 79.26 17.46
3 67.90 79.89 17.66

context does not affect the results, as the mismatches can only be

caused by scripts from new domains absent from the policies, which

we did not encounter on the top 100 websites.

Summary. Our evaluation shows that JSIsolate entails very few

and fixable compatibility issues and works well with popular real

world web applications in general.

5.4 Performance

To measure the performance overhead of JSIsolate, we used the

selenium chromedriver to run a Vanilla Chromium browser and

JSIsolate to visit the Alexa top 1K websites. We set a timeout of

160 seconds and for websites that timeouted after several retries, we

enlarged the timeout to 360 seconds. We recorded the average page

loading time based on the window.performance.timing interface,

and computed the average memory consumption in 3 runs.

5.4.1 Log Collection Overhead. We ran JSIsolate in the log collec-

tion mode to measure the overhead when collecting the JavaScript

object access logs and script initiator records. We successfully gath-

ered valid data on 994, 994 and 995 websites in the 3 runs. The

results are presented in Table 3 and Table 4.

In the log collection mode, the slowdown on page loading varies

from 24.81% to 34.67% and is averaged at 29.54%. The memory

overhead ranges from 17.46% to 18.49%, with an average of 17.87%.

We further tested JSIsolate on industry-standard benchmarks,

and the evaluation results are listed in Table 5. As shown, the most

significant overhead was observed on the SunSpider benchmark,

which tests the core JavaScript language features like hashing and

matrix processing, etc. Overall, 45 scripts were statically included

on the test page, and JSIsolate recorded over 230K read/write

operations. On the other two benchmarks, however, the overhead

was comparable with what we observed on real world websites.

Note that a developer would need to recollect the logs only if

she/he changes the included scripts, or a script changes its inter-

action with other scripts significantly. Any runtime errors caused

by the changes can be reported to help the developers quickly set

a new isolation policy and/or easily identify a suspicious script.

Therefore, the overhead is acceptable as the log collection needs

not to be performed frequently.

5.4.2 Script Isolation Overhead. We ran JSIsolate in policy en-

forcement mode to evaluate the performance overhead incurred for

isolating scripts. JSIsolate reads the isolation policies from local

3All the test cases are available at: https://github.com/jeresig/dromaeo

Table 5: Log collection overhead on industry-standard

JavaScript benchmarks. The test results represent the geo-

metric mean of run/sec for each individual test.

Benchmark3 Vanilla JSIsolate %Dec (%)

Dromaeo 1,957.18 1,736.79 11.26
SunSpider 2,855.82 2,024.38 29.11
V8 Test Suite 1,804.71 1,759.29 2.52

Table 6: Slowdown on average page loading time during script

isolation (URL-level policies).

Round Vanilla (s) JSIsolate (s) %Inc (%)

1 5.67 5.99 5.64
2 6.14 6.71 9.38
3 5.67 6.17 8.82

Table 7: Increase of average memory consumption in script

isolation (URL-level policies).

Round Vanilla (MB) JSIsolate (MB) %Inc (%)

1 66.19 67.49 1.96
2 67.43 69.00 2.33
3 67.75 68.73 1.45

Table 8: Slowdown on average page loading time during script

isolation (domain-level policies).

Round Vanilla (s) JSIsolate (s) %Inc (%)

1 4.90 5.19 5.92
2 5.29 5.57 5.29
3 4.68 5.09 8.76

files and assigns contextid to scripts according to the strategy in

ğ3. We successfully collected performance data for all 978 websites.

Specifically, we measured the overhead using both the URL-level

and domain-level policies. The experiment results are presented in

Table 6, Table 7, Table 8 and Table 9.

When using URL-level policies, the average slowdown is 7.95%,

and on 47.51% websites the page loading time increased by no more

than 1%. For domain-level policies, the average slowdown is 6.66%.

This demonstrates that JSIsolate incurs small overhead on page

loading. Using URL-level policies, the average memory overhead is

1.91%, and the overhead is no greater than 1% on 48.88% websites.

For domain-level policies, the average memory overhead is 1.34%.

As shown, the memory overhead is also negligible.

Summary. The experiments show that JSIsolate can efficiently

isolate scripts with very limited overhead.

6 DISCUSSION AND FUTUREWORK

We discuss our work’s current limitations and our future work.

Policy Deployment. JSIsolate reads the isolation policies from

local files in our current prototype. In the future, we plan to enable

developers to use a new HTTP response header for the policies.

Alternatively, the policies can be embedded in the HTML page, like

internal CSS. Moreover, the policies can be integrated with existing

websites through minimal changes, e.g., by a simple update of the

template used in web development frameworks (e.g., Angular).

202

https://github.com/jeresig/dromaeo

JSISOLATE: Lightweight In-Browser JavaScript Isolation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 9: Increase of average memory consumption in script

isolation (domain-level policies).

Round Vanilla (MB) JSIsolate (MB) %Inc (%)

1 66.39 67.68 1.94
2 66.72 67.32 0.90
3 67.42 68.22 1.19

Dependency Analysis. JSIsolate excludes dynamic scripts and

event listeners from the dependency analysis, which may cause ex-

ceptions after script isolation. We adopt this design for preventing

cross-context interference through dynamic script inclusion, and

event listeners are intrinsically isolated in different DOM wrappers,

as explained in ğ3. Nevertheless, to mitigate the exceptions, devel-

opers can adjust the policies with limited manual efforts (see ğ5.2).

We leave it as a future work to investigate other possible solutions.

Code Coverage. JSIsolate performs monkey testing to capture

and analyze script dependencies in a scalable way. The monkey

testing, however, does not promise a full code coverage. Therefore,

the dependency analysis might be incomplete and cause some ex-

ceptions after script isolation. However, the automatic dependency

analysis can be integrated with the current website regression test-

ing process, which thoroughly tests the application. This introduces

very limited overhead in the development cycle and could help iden-

tify possible compatibility issues and improve code reliability.

Classification of Scripts. JSIsolate relies on the domain relation-

ship list from Disconnect to identify scripts from domains related to

the first-party domain. As shown in ğ5.1, only 142 of the evaluated

domains were present on the list. However, we expect that with the

contribution of the community, the list would be more comprehen-

sive in the future. Meanwhile, Google has proposed First-Party Sets

[11], that allows developers to explicitly specify related domains

in a .json file, and will be implemented in the Chromium browser

in the near future. We believe the First-Party Sets would further

improve our ability to precisely classify scripts.

Applicability in Other Browsers. In addition to the Chromium

browser, other full-fledged browsers also provide JavaScript code

isolation mechanisms. For instance, the Safari browser also exe-

cutes scripts injected by App Extensions in isolated worlds. Mozilla

Firefox supports the Xray vision feature [21], that uses separate

contexts for content scripts and normal scripts. Therefore, the de-

sign of JSIsolate can be easily extended to other popular browsers.

7 RELATED WORK

JavaScript Isolation. [23, 27] confined malicious JavaScript code

using a reference monitor, and [26] restricted the interaction be-

tween Adobe ActionScript and JavaScript code. Magazinius et al.

fixed several design flaws of [27] in [16]. Agten et al. sandboxed

sensitive DOM objects to isolate third-party scripts, with the page

loading overhead of over 30% [3]. Treehouse [12] and SafeJS [7]

used web workers to run scripts in separate threads. However, they

required the developers to specify the permitted operations of each

isolated script, which is non-trivial for normal web developers.

Some other works isolated scripts using iframes [10, 13, 19, 33, 42].

They need to interpose the interaction between scripts and DOM

of the original page. In contrast, JSIsolate utilizes isolated worlds

to separate functionally independent scripts, which does not affect

the way that scripts are executed. Further, it is able to generate

isolation policies automatically, which is more efficient and easier

to deploy. Adam et al. proposed to isolate content scripts of browser

extensions using isolated world in Firefox browser [4], which has

a different target from JSIsolate. BREAKAPP confines JavaScript

modules in protected compartments [36]. JSIsolate can also isolate

normal web scripts and any JavaScript code created dynamically.

Limiting JavaScript Privileges. ESCUDO organized JavaScript

principals and resources in ringswith different privileges [14]. It pre-

vents principals with lower privileges from accessing resources with

higher privileges. Meyerovich et al. registered advice for security-

sensitive functions like eval to restrict the calls to them [18]. Web-

Jail uses deep advice to enforce least-privilege integration of scripts

[35]. Snyder et al. developed an extension to block unsafe JavaScript

features based on pre-defined policies [31]. Flowfox intercepts DOM

API calls through secure multi-execution to protect data confiden-

tiality [9]. COWL enforces label-based access control to prevent

scripts from exfiltrating sensitive data [32]. Chudnov et al. im-

plemented an inlined information flow control (IFC) monitor to

protect data confidentiality and integrity [8]. BrowserShield [29]

and JaTE [34] rewrite HTML pages and scripts to safe equivalents.

Theseworks have a different target from JSIsolate, which separates

scripts with different functionalities to provide higher reliability.

Isolation in the Browser. Prior works have proposed to ren-

der untrusted web content in lower privileged renderer processes

[1, 28, 43]. They limited the capability of attackers that compro-

mise the renderer. However, the browser still loads content from

different websites in the same renderer process, thus attackers can

access cross-site data. A recent work of Google renders untrusted

content from different websites in separate processes [30]. Fission

[20] further enforces the isolation at the granularity of origins.

Narayan et al. sandboxed vulnerable C/C++ libraries used by the

renderer in lightweight WebAssembly sandboxes [22]. These works

are orthogonal to JSIsolate, which assumes a trusted browser.

8 CONCLUSION

Third-party scripts are prevalently used on web application to en-

hance the functionalities. However, the current browser architec-

ture allows all scripts to access a shared context, causing unex-

pected effects. In this paper, we present JSIsolate, a browser-based

framework that improves JavaScript code reliability by executing

scripts in isolated execution contexts. JSIsolate analyzes the depen-

dency relationship between scripts on a web page, and identifies the

scripts from third-party domain that are not functionally dependent

on first-party scripts. It then executes the scripts in a separate iso-

lated environment to prevent them from interfering with first-party

scripts. We demonstrate with real world examples that JSIsolate

offers a practical approach to enhancing JavaScript reliability and

separating functionality-independent code. Our experiments on

Alexa top 1K websites further prove that JSIsolate is backward

compatible, and introduces limited performance overhead.

ACKNOWLEDGMENT

The work described in this paper was partially supported by a

grant from the Research Grants Council of the Hong Kong Special

Administrative Region, China (Project No.: CUHK 24209418).

203

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Mingxue Zhang and Wei Meng

REFERENCES
[1] [n.d.]. WebKit2. https://trac.webkit.org/wiki/WebKit2.
[2] Ben Adida, Adam Barth, and Collin Jackson. 2009. Rootkits for javascript envi-

ronments. In 3rd USENIX Workshop on Offensive Technologies (WOOT ’09).
[3] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H Phung, Lieven Desmet,

and Frank Piessens. 2012. JSand: complete client-side sandboxing of third-party
JavaScript without browser modifications. In Proceedings of the 28th Annual
Computer Security Applications Conference (ACSAC).

[4] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman. 2010.
Protecting browsers from extension vulnerabilities. In Proceedings of the 17th
Annual Network and Distributed System Security Symposium (NDSS). San Diego,
CA.

[5] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2016. Content security
problems? evaluating the effectiveness of content security policy in the wild.
In Proceedings of the 23rd ACM Conference on Computer and Communications
Security (CCS). Vienna, Austria.

[6] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2018. Semantics-based
analysis of content security policy deployment. ACM Transactions on the Web 12,
2 (2018), 1ś36.

[7] Damien Cassou, Stéphane Ducasse, and Nicolas Petton. 2013. Safejs: Hermetic
sandboxing for javascript. arXiv preprint arXiv:1309.3914 (2013).

[8] Andrey Chudnov and David A Naumann. 2015. Inlined information flow mon-
itoring for JavaScript. In Proceedings of the 22nd ACM Conference on Computer
and Communications Security (CCS). Denver, Colorado.

[9] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
2012. FlowFox: a web browser with flexible and precise information flow control.
In Proceedings of the 19th ACM Conference on Computer and Communications
Security (CCS). Raleigh, NC.

[10] Frederik De Keukelaere, Sumeer Bhola, Michael Steiner, Suresh Chari, and
Sachiko Yoshihama. 2008. Smash: secure component model for cross-domain
mashups on unmodified browsers. In Proceedings of the 17th International World
Wide Web Conference (WWW). Beijing, China.

[11] Google. [n.d.]. First-Party Sets. https://github.com/privacycg/first-party-sets.
[12] Lon Ingram and Michael Walfish. 2012. TreeHouse: JavaScript sandboxes to

helpWeb developers help themselves. In Proceedings of the 2012 USENIX Annual
Technical Conference (ATC). Boston, MA.

[13] Collin Jackson and Helen J Wang. 2007. Subspace: secure cross-domain commu-
nication for web mashups. In Proceedings of the 16th International World Wide
Web Conference (WWW). Banff, Alberta, Canada.

[14] Karthick Jayaraman,Wenliang Du, Balamurugan Rajagopalan, and Steve J Chapin.
2010. Escudo: A fine-grained protection model for web browsers. In Proceedings
of the 30th International Conference on Distributed Computing Systems (ICDCS).

[15] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the Use
of Outdated JavaScript Libraries on the Web. In Proceedings of the 2017 Annual
Network and Distributed System Security Symposium (NDSS). San Diego, CA.

[16] Jonas Magazinius, Phu H Phung, and David Sands. 2010. Safe wrappers and sane
policies for self protecting JavaScript. In Nordic Conference on Secure IT Systems.
Springer, 239ś255.

[17] Leo A Meyerovich, Adrienne Porter Felt, and Mark S Miller. 2010. Object views:
Fine-grained sharing in browsers. In Proceedings of the 19th International World
Wide Web Conference (WWW). Raleigh, NC.

[18] Leo A Meyerovich and Benjamin Livshits. 2010. ConScript: Specifying and en-
forcing fine-grained security policies for Javascript in the browser. In Proceedings
of the 31th IEEE Symposium on Security and Privacy (Oakland). Oakland, CA.

[19] James Mickens. 2014. Pivot: Fast, synchronous mashup isolation using gener-
ator chains. In Proceedings of the 35th IEEE Symposium on Security and Privacy
(Oakland). San Jose, CA.

[20] Mozilla. [n.d.]. Project Fission. https://wiki.mozilla.org/Project_Fission.
[21] Mozilla. [n.d.]. Xray vision. https://developer.mozilla.org/en-US/docs/Mozilla/

Tech/Xray_vision.
[22] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm,

Sorin Lerner, Hovav Shacham, and Deian Stefan. 2019. Retrofitting Fine Grain
Isolation in the Firefox Renderer. In Proceedings of the 29th USENIX Security
Symposium (Security). Boston, MA.

[23] Kailas Patil, Xinshu Dong, Xiaolei Li, Zhenkai Liang, and Xuxian Jiang. 2011.
Towards fine-grained access control in javascript contexts. In Proceedings of the
31st International Conference on Distributed Computing Systems (ICDCS).

[24] Jibesh Patra, Pooja N Dixit, and Michael Pradel. 2018. Conflictjs: finding and
understanding conflicts between javascript libraries. In Proceedings of the 40th
International Conference on Software Engineering (ICSE). Gothenburg, Sweden.

[25] Jackson Patrick, Mills Codi, Oppenheim Casey, and Toyens Victor. [n.d.]. Dis-
connect. https://disconnect.me.

[26] Phu H Phung, Maliheh Monshizadeh, Meera Sridhar, Kevin W Hamlen, et al.
2014. Between worlds: Securing mixed javascript/actionscript multi-party web
content. IEEE Transactions on Dependable and Secure Computing 12, 4 (2014),
443ś457.

[27] Phu H Phung, David Sands, and Andrey Chudnov. 2009. Lightweight self-
protecting JavaScript. In Proceedings of the 4th International Symposium on Infor-
mation, Computer, and Communications Security. 47ś60.

[28] Charles Reis, Adam Barth, and Carlos Pizano. 2009. Browser security: lessons
from google chrome. Queue 7, 5 (2009), 3ś8.

[29] Charles Reis, John Dunagan, Helen J Wang, Opher Dubrovsky, and Saher Esmeir.
2007. BrowserShield: Vulnerability-driven filtering of dynamic HTML. ACM
Transactions on the Web 1, 3 (2007), 11śes.

[30] Charles Reis, AlexanderMoshchuk, and Nasko Oskov. 2019. Site isolation: Process
separation for web sites within the browser. In Proceedings of the 28th USENIX
Security Symposium (Security). Santa Clara, CA.

[31] Peter Snyder, Cynthia Taylor, and Chris Kanich. 2017. Most websites don’t need
to vibrate: A cost-benefit approach to improving browser security. In Proceedings
of the 24th ACM Conference on Computer and Communications Security (CCS).
Dallas, TX.

[32] Deian Stefan, Edward Z Yang, Petr Marchenko, Alejandro Russo, Dave Herman,
Brad Karp, and David Mazières. 2014. Protecting Users by Confining JavaScript
with COWL. In Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). Broomfield, Colorado.

[33] Mike Ter Louw, Karthik Thotta Ganesh, and VN Venkatakrishnan. 2010. Ad-
Jail: Practical Enforcement of Confidentiality and Integrity Policies on Web
Advertisements. In Proceedings of the 19th USENIX Security Symposium (Security).
Washington, DC.

[34] Tung Tran, Riccardo Pelizzi, and R Sekar. 2015. Jate: Transparent and efficient
javascript confinement. In Proceedings of the 31st Annual Computer Security
Applications Conference (ACSAC).

[35] Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank Piessens, and Wouter
Joosen. 2011. WebJail: least-privilege integration of third-party components in
web mashups. In Proceedings of the 27th Annual Computer Security Applications
Conference (ACSAC).

[36] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André DeHon,
and Jonathan M Smith. 2018. BreakApp: Automated, Flexible Application Com-
partmentalization. In Proceedings of the 2018 Annual Network and Distributed
System Security Symposium (NDSS). San Diego, CA.

[37] W3C. [n.d.]. Content Security Policy Level 3. https://www.w3.org/TR/CSP3/.
[38] W3C. [n.d.]. Cross-origin resource sharing (CORS). https://www.w3.org/wiki/

CORS.
[39] W3C. [n.d.]. HTML5. https://www.w3.org/TR/2009/WD-html5-20090423/

browsers.html.
[40] W3C. [n.d.]. Same-origin Policy. https://www.w3.org/Security/wiki/Same_

Origin_Policy.
[41] W3C. [n.d.]. Subresource Integrity (SRI). https://www.w3.org/TR/SRI/.
[42] Saman Zarandioon, Danfeng Yao, and Vinod Ganapathy. 2008. Omos: A frame-

work for secure communication in mashup applications. In Proceedings of the
24th Annual Computer Security Applications Conference (ACSAC).

[43] Andy Zeigler. [n.d.]. IE8 and Loosely-Coupled IE (LCIE).
https://docs.microsoft.com/en-gb/archive/blogs/ie/ie8-and-loosely-coupled-ie-
lcie.

[44] Mingxue Zhang and Wei Meng. 2020. Detecting and understanding JavaScript
global identifier conflicts on the web. In Proceedings of the 28th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). Sacramento, CA.

[45] Mingxue Zhang, Wei Meng, and Yi Wang. 2019. Poster: Finding JavaScript Name
Conflicts on the Web. In Proceedings of the 26th ACM Conference on Computer
and Communications Security (CCS). London, UK.

204

https://github.com/privacycg/first-party-sets
https://wiki.mozilla.org/Project_Fission
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/Xray_vision
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/Xray_vision
https://disconnect.me
https://www.w3.org/TR/CSP3/
https://www.w3.org/wiki/CORS
https://www.w3.org/wiki/CORS
https://www.w3.org/TR/2009/WD-html5-20090423/browsers.html
https://www.w3.org/TR/2009/WD-html5-20090423/browsers.html
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/TR/SRI/

	Abstract
	1 Introduction
	2 Overview
	2.1 Background
	2.2 Motivating Examples
	2.3 Research Challenges

	3 Design and Methodology
	3.1 Recording JavaScript Object Accesses
	3.2 Tracking Dynamic Script Inclusion
	3.3 Generating Isolation Policies
	3.4 Creating Isolation Environments

	4 Implementation
	5 Evaluation
	5.1 Dependency Analysis
	5.2 Reliability Improvement
	5.3 Compatibility
	5.4 Performance

	6 Discussion and Future Work
	7 Related work
	8 Conclusion
	References

