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Abstract

We address the problem of robust normal reconstruction bydense photometric stereo, in the presence of com-

plex geometry, shadows, highlight, transparencies, variable attenuation in light intensities, and inaccurate estimation

in light directions. The input is a dense set of noisy photometric images, conveniently captured by using a very sim-

ple set-up consisting of a digital video camera, a reflectivemirror sphere, and a handheld spotlight. We formulate

the dense photometric stereo problem as a Markov network, and investigate two important inference algorithms for

Markov Random Fields (MRFs) – graph cuts and belief propagation – to optimize for the most likely setting for

each node in the network.

In thegraph cutalgorithm, the MRF formulation is translated into one of energy minimization. A discontinuity-

preserving metric is introduced as the compatibility function, which allowsα-expansion to perform efficiently the

maximum a posteriori (MAP) estimation. Using the identicaldense input and the same MRF formulation, our

tensor belief propagationalgorithm recovers faithful normal directions, preservesunderlying discontinuities, im-

proves the normal estimation from one of discrete to continuous, and drastically reduces the storage requirement

and running time. Both algorithms produce comparable and very faithful normals for complex scenes. Although

the discontinuity-preserving metric in graph cuts permitsefficient inference of optimal discrete labels with a the-

oretical guarantee, our estimation algorithm using tensorbelief propagation converges to comparable results but

runs faster because very compact messages are passed and combined. We present very encouraging results on nor-

mal reconstruction. A simple algorithm is proposed to reconstruct a surface from a normal map recovered by our

method.

With the reconstructed surface, an inverse process, known as relighting in computer graphics, is proposed to

synthesize novel images of the given scene under user-specified light source and direction. The synthesis is made to

run in real time by exploiting the state-of-the-art graphics processing unit (GPU). Our method offers many unique

advantages over previous relighting methods, and can handle a wide range of novel light sources and directions.
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I. INTRODUCTION

Since Woodham [44] proposedphotometric stereothere has been extensive theoretical and

experimental research on the problem. While approaches in photometric stereo using two views

with known albedos [44], three views [15], four views [7], [35], [3], more views [22], complex

reflectance models [28], [37], [18], [35], lookup tables [44], [45], reference objects [16], [13],
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[10], and novel object representation [4] have been reported, photometric stereo is still consid-

ered to be a difficult problem in the presence of shadows and specular highlights, and for objects

with complex material and geometry.

Inspired by [24] where robust stereo reconstruction was achieved by using adenseset of

images, and by [36] in which aMarkovnetwork was used to formulate the problem of geometric

stereo reconstruction, in this paper, we propose to addressthe problem of dense photometric

stereo by employing the Markov Random Field (MRF) approach to reconstruct dense surface

normals from a dense set of photometric images, which can be conveniently captured using a

very simple set-up consisting of a handheld spotlight, a reflective mirror sphere and a digital

video (DV) camera. Our approach not only infers the piecewise smooth normal field, but also

preserves the underlying orientation discontinuities andrejects noises caused by highlight and

shadows. As we shall see, the availability of dense data effectively copes with non-Lambertian

observations inherent in the dense set. Using the dense data, the initial normal at a pixel is

obtained, which is used as the local evidence in a MRF networkfor solving the problem. A

simple surface reconstruction algorithm is proposed to generate an acceptable surface from our

recovered normal maps. We shall investigate two important MRF inference algorithms:

Graph cuts (GC) In the first method, we translate the MRF model for dense photometric

stereo into an energy function. Estimating the MRF-MAP solution is equivalent to minimizing

the corresponding energy function. The MAP estimation can be efficiently performed by the

graph cut algorithm [20], where the data term is encoded using the local evidence identical to

that used in our belief propagation algorithm. We show that the smoothness term can be encoded

into a discontinuity-preserving metric, thus making the more efficientα-expansion [6] rapidly

converge to an optimal solution w.r.t. the discrete label space with atheoreticalguarantee, in-

stead of the slower swap move [6] in a pairwise MRF. Similar to[19], the smoothness constraint

is enforced while geometric discontinuities are preserved. In contrast to [19], however, while

the energy function we minimize is still regular, our noisy photometric data are treated asym-

metrically by resampling the dense and scattered data into an unbiased set.

Tensor belief propagation (TBP) Our second method uses a MRF network where hidden

nodes receive initial messages derived using local evidences. These nodes communicate among

each other by belief propagation to infer smooth structures, preserve discontinuities and reject

noises. In this paper, we propose a new and very fast tensor-based message passing scheme for

producing an approximate MAP solution of the Markov network. Although it is an algorithm

that estimates the solution, it produces comparable results to GC. Besides, it allows continuous
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estimation of normal directions, runs very fast and requires significantly less memory compared

to traditional message passing used in belief propagation.

The preliminary versions of this paper have appeared in [38]and [46] where the two inference

algorithms were developed independently and were based on different MRF models. In this

paper, we evaluate and compare the robustness and efficiencyof the two inference algorithms

based on the same MRF formulation and using the same input. For high precision normal

reconstruction, the graph cut algorithm converges with a theoretical guarantee to an optimal

solution in a few iterations. We have improved the graph cut algorithm in this paper, making

the system runs much faster than the algorithm presented in [46]. The metric proof has also

been revised due to the use of a robust metric in encoding the smoothness term. On the other

hand, because the traditional belief propagation is intractable due to the prohibitive size of a

message encoded in the conventional way, we propose tensor message passing to approximate

the MAP solution, by transforming the estimation from one ofdiscrete to continuous. While

results comparable to those produced by graph cuts are obtained, both running time and storage

requirement are significantly reduced. Comparing with [38], [46], this paper presents a complete

coverage of the two methods. More quantitative evaluation are performed using real as well as

synthetic data. Finally, we propose a novel andreal-timemethod on relighting based on our

photometric stereo reconstruction.

The organization of this paper is as follows: Section II reviews the related work. Section III

describes the image capturing system for collecting our dense data. Section IV details the initial

normal estimation and the MRF approach for dense photometric stereo. The two inference algo-

rithms are then described in detail. Section V describes theenergy minimization by graph cuts.

Section VI describes our tensor belief propagation. We present our algorithm on surface recon-

struction from normals in section VII. Based on the same MRF formulation and identical dense

input, the two normal reconstruction methods are evaluatedand compared in section VIII. We

present results of normal and surface reconstruction on real and noisy data in section IX. Finally,

in section X, using the reconstructed surface, we propose aninverse process to synthesize novel

images for the input scene under user-specified lighting directions. By making use of recent

hardware technology, the process is made to run in real time.The process is alternatively and

better known as real-time relighting in computer graphics.Our method provides many unique

advantages in comparison with previous relevant relighting method.
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II. RELATED WORK

Woodham [44] first introduced photometric stereo for Lambertian surfaces. In this work,

three images are used to solve the reflectance equation for recovering surface gradientsp, q and

albedoρ of a Lambertian surface:

R(p, q) = ρ
lxp+ lyq + lz√

1 + p2 + q2
(1)

wherep = ∂z
∂x

, q = ∂z
∂y

are the unknown surface gradients,[lx ly lz]
T is the known unit light direc-

tion. Later, Belhumeur and Kriegman [5] showed that the set of images of a convex Lambertian

object forms a convex polyhedron cone whose dimension is equal to the number of distinct nor-

mals, and that this cone can be constructed from three properly chosen images. Many approaches

have been proposed to address the photometric stereo problem:

Four images Coleman and Jain [7] used four photometric images to computefour albedo

values at each pixel, using the four combinations involvingthree of the given images. In the

presence of specular highlight, the computed albedos will not be identical, which indicates that

some measurement must be excluded. In [35], four images werealso used. Barsky and Petrou [3]

showed that [7] is still problematic if shadows are present,and generalized [7] to handle color

images. In these methods, little neighborhood informationis considered so they are sensitive to

noise caused by incorrect estimation in light directions orviolations to the Lambertian model.

Reference objects In [16], a reference object was used to perform photometric stereo, in

which isotropic materials were assumed. In this approach, the outgoing radiance functions for

all directions are tabulated to obtain an empirical reflectance model. Hertzmann and Seitz [13]

used a similar technique to compute surface orientations and reflectance properties. The authors

made use of their proposed orientation consistency to establish the correspondence between an

unknown object and a known reference object. In many cases, however, a reference object for

establishing correspondence is unavailable. A simplified reflectance model will then be used.

Reflectance models By considering diffuse and non-Lambertian surfaces, Tagare and

deFigueriredo [37] developed a theory onm-lobed reflective map to solve the problem. Kay

and Caelly [18] extended [37] and applied nonlinear regression to a larger number of input im-

ages. Solomon and Ikeuchi [35] extended [7] by separating the object into different areas. The

Torrance-Sparrow model was then used to compute the surfaceroughness. Nayar et al [28] used

a hybrid reflectance model (Torrance-Sparrow and Beckmann-Spizzichino), and recovered not

only the surface gradients but also parameters of the reflectance model. In these approaches, the

models used are usually somewhat complex, and a larger number of parameters are estimated.
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Fig. 1. Two typical noisy photometric images forSnailcaptured by our simple system. (a) is significantly contam-

inated by shadows, and (b) is corrupted by highlight. (c) A typical trajectory of the estimated light directions shows

that they are scattered and very noisy.

Basri and Jacobs [4] used low-order spherical harmonics to encode Lambertian objects. They

assumed isotropic and distant light sources. Lighting may be unknown or arbitrary. Shape recov-

ery is then performed in a low-dimensional space. Goldman etal [10] proposed a photometric

stereo method that recovers the shape (normals) and BRDFs using an alternating optimization

scheme. Unlike their earlier work [13], a reference object is not needed, which is solved as part

of the reconstruction process. The BRDF model used is the Ward model. Since they only used

a sparse set of samples, the light calibration should be accurate, and severe highlight and cast

shadows must be absent. They built an interactive relighting system whereas we built a real-time

relighting system that supports very fast frame rate and more versatile lighting effects (see the

supplementary video). Our relighting approach does not require recovery of material properties

and any assumption on the reflectance model.

To our knowledge, there is no previous work using belief propagation or energy minimization

via graph cuts to address the problem of (dense) photometricstereo. The use of a dense set of

photometric stereo data (> 100) has not been extensively explored, possibly due to the difficulty

in producing hundreds of accurate light directions, while our approach is robust against inaccu-

rate and scattered estimations in light directions sampledby our simple capturing system. An

earlier work [22] investigated two algorithms: the parallel and cascade photometric stereo for

surface reconstruction which use a larger number of images.A related work using one image,

that is, shape from shading, was reported in [17], where the problem was solved via graph cuts,

by combining local estimation based on local intensities and global energy minimization.

Note that exact inference in the Markov network withloops is intractable. Algorithms that

approximate the solution such as loopy belief propagation or Pearl’s algorithm [32] have been

employed. For energy minimization by graph cuts [20], the conditions for an energy function

that can be minimized was described and a fast implementation is currently available. The
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Fig. 2. (a) A typical scenario of data capturing. (b)–(c): Two views of the experimental set-up under different

illumination. (d) The captured images correspond to a scattered point set on the light direction sphere.

converged solution given by graph cuts is optimal “in a strong sense” [20], that is, within a

known factor of the global optimal solution.

III. D ATA CAPTURING

In this section, we first describe our very simple system for efficiently capturing a dense

set of photometric images. The light directions and photometric images we capture are very

noisy (Fig. 1). Unlike certain approaches in photometric stereo where high-precision capturing

systems were built, we propose to resample the dense and noisy observations to infer a uniform

set, from which robust normal plane fitting can be performed (section IV) to estimatẽNs at each

pixel s. The initial normals will be used to encode the matching costfor belief propagation, or

encoded into the robust data term in energy minimization using graph cuts.

Our system is inspired by [13] where a reference object of known geometry was used to find

out surface normals of the target object. They performed matching on bidirectional reflectance

distribution function (BRDF) response based on the orientation-consistency cue, where the spec-

ular highlight implicitly gives the surfacenormal direction. The reference object should be sim-

ilar to the target object in material. On the other hand, our approach explicitly uses the specular

highlight to estimate thelight direction, which is used to obtain the initial surface normal at each

pixel. No reference object of similar material is used.

A. Light calibration

Our robust dense photometric stereo requires acceptable estimated light directions but they

need not be very accurate. In fact, our proposed light calibration method is very simple. Shown

in Fig. 2(a) is our experimental set-up, where two views of the object and a mirror sphere under

different illuminations are depicted in Fig. 2(b)–(c).

A video camcorder is used to capture a sequence of images by changing the direction of the

light source which is a handheld spotlight. The auto-exposure function of the video camcorder

is turned off when the video is captured. In our experiments,we tried to hold the spotlight at a
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(a) (b) (c)

Fig. 3. Icosahedron: (a) shows the original icosahedron with 20 base faces. In (b) and (c), each face of (a) is

subdivided into 4 equilateral triangles recursively in total of 4 times and 5 times, respectively

constant distance from the object so as to maintain a constant irradiance impinging on the object.

But it is difficult to achieve using a handheld spotlight, andtherefore our images suffer various

degrees of attenuation in light intensity. To sample as manydirections as possible that cover the

half space containing the object (Fig. 2(d)), it is inevitable that the shadows of the wires, the

camera tripod and the camera itself are cast onto the target object. Therefore, missing directions

are not uncommon in a typical set of sampled images. The captured images thus represent a

coarse and scattered collection of photometric responses over the light directions sampled on a

unit hemisphere (Fig. 2(d)). This mirror sphere approach was not adopted in [10] because sparse

samples were used in their photometric stereo method, wherelight calibration is more critical to

the reconstruction accuracy. In our method, we estimate thelight direction by locating the mirror

reflection, or the brightest point on the mirror sphere. By searching for the maximum intensity,

we can readily localize the point of reflection. Since we knowthe geometry of the sphere and

the viewing direction which is assumed to be orthographic, by Snell’s law, the light direction

is given byL = 2N(N · H) − H whereN is the known surface normal at the brightest pixel

(a, b),H = [0 0 1]T andL is the estimated light direction.N can be determined given(a, b), the

image of the sphere center(cx, cy), and the image of the sphere radiusr. Under orthographic

projection, we can measure(cx, cy) andr directly on any captured image.

In practice, the light source direction is located on the upper hemisphere containing the object

(Fig. 2(d)). So, to minimize the error caused by reflections not due to the light source (e.g. from

the table where the object and the sphere are placed), we haveto limit the search space of the

maximum intensity by considering only the pixels(x, y) satisfying(x − cx)
2 + (y − cy)

2 <

r2 − r2 cos(π
4
) − ǫ whereǫ > 0 is a small constant to offset the small error caused by the

measuredr, cx andcy. Using this condition, all light coming from the half space containing the

lower hemisphere of the reflective sphere will be automatically discarded.
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B. Uniform resampling

There are two reasons to perform uniform resampling on the captured dense data. First, the

data volume and biases will be drastically reduced after resampling. Note that we capture a video

sequence at 30 frames/sec, and typically we spend five minutes to capture a data set. The second

reason is to partially leverage noise rejection to data resampling. Noise are typically caused by

inaccurate estimation of light directions and non-Lambertian observations. As we shall see, our

resampling is implemented by image interpolation which helps to smooth out outliers.

The data acquired by the above setup corresponds to a scattered point set on the light direction

sphere where undesirable biases are present. To infer a set of light direction samples uniformly

distributed on a unit sphere, we use a uniform unit icosahedron and subdivide on each face four

times recursively [2] (Fig. 3). Suppose that the object is located at the center of a unit sphere

which contains the uniform unit icosahedron after subdivision. Ideally, we want to illuminate the

object along the line joining the center and the vertices of the subdivided icosahedron to achieve

uniform distribution. In practice, for each light direction Lo at a given vertex of the subdivided

icosahedron, we seek a set of light directionsLi that are closest toLo, and obtain the imageIo at

Lo by interpolating the corresponding imagesIi atLi usingIo(x, y) =
∑

i∈V
Lo·Li∑

i∈V
Lo·Li

Ii(x, y)

whereV is a set of indices to the captured light directions that are closest toLo. Typically, the

input data size is reduced to several hundreds after uniformresampling.

IV. I NITIAL NORMALS AND THE MRF MODEL FOR DENSE PHOTOMETRIC STEREO

Given a dense set of images captured at a fixed viewpoint with their corresponding distant

light directions, our goal is to find the optimal normal vector Ns at each pixels.

Initial normal estimation: dense vs. sparse We describe how to estimate the initial̃Ns

at each pixels by making use of the intensity ratios derived from thedenseand noisy input.

As we shall demonstrate, given noisy input, the following method proves to be infeasible for

sparseinput but works for dense and noisy input where the inherent redundancy is invaluable in

estimatingÑs.

Supposethat the object is Lambertian. Then, the reflectance at each pixel s is described by

ρs(Ñs · Ls), whereρs is the surface albedo,̃Ns is the normal andLs is the light direction at the

pixel s. Note thatÑs andρs are the same for all corresponding pixels in the sampled images.

We use theratio imageapproach to eliminateρs and obtain the initial estimatẽNs. Ratio

image was proposed in [34] for surface detail transfer. Alternatives for estimating̃Ns such as

the minimization of the residual||Is−ρs(Ns ·Ls)||2 are also possible. However, becauseρs itself
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Fig. 4. Initial normal estimation from sparse vs. dense datafor Teapot. From left to right: Using 5 images only,

the 5 normal maps are respectively produced by using each image as the denominator image. The rightmost normal

map is produced using a dense set of images. The normal map is displayed asN · L whereL = ( 1√
3
, 1√

3
, 1√

3
)T is

the light direction.

is also unknown and the Lambertian model is often violated, the estimation of initial normal̃Ns

would have been more complex and less stable ifρs were also considered in the estimation.

Let k be the total number of sampled images. To eliminateρ, we dividek−1 sampled images

by a chosen image we calldenominator imageto obtaink − 1 ratio images. Without loss of

generality letIk be the denominator image. Each pixel in a ratio image is therefore expressed by

Ii
Ik

=
Ñs · Li

Ñs · Lk

. (2)

An ideal denominator image is one that is minimally affectedby shadows and highlight, which

is difficult to obtain. By adopting the simple Lambertian model, we derive the denominator

image to roughly eliminate the surface albedo by producing ratio images. The derivation is

straightforward and is described in the footnote1.

By using no less than three ratio images, we produce a local estimation of the normal at each

pixel: defineÑs = [nx ny nz]
T ,Li = [li,x li,y li,z]

T andLk = [lk,x lk,y lk,z]
T . For each pixels in

a ratio imagei, rearranging (2) gives the following

Ai,snx +Bi,sny + Ci,snz = 0 (3)

1Our denominator image is derived by the following simple method:

1. We stack the sampled images to form a space-time volume{(x, y, t)}.

2. For each pixel location(x, y), we sort all space-time pixels(x, y, t) in non-descending intensities along timet. The

intensity rank of each pixel is thus known.

3. Since pixels with intensity adversely affected by shadows and specular highlight go to one of the two extremes of the

sorted list, for each location(x, y), if the intensity rank at(x, y, t) is higher than the median and smaller than some upper

bound, it is highly probable that pixel(x, y) is free of shadows and highlight.

Thus, given a sampled imageIt, we count the number of pixels whose intensity rank satisfiesrank > RL whereRL ≥ 50th

percentile. LetKt
RL

be the total number of pixels satisfying this condition,rt
RL

be the mean rank among the pixels that satisfy

this condition. The denominator image is defined to be the onewith 1) maximumKRL
and 2)rRL

lower than some threshold

RH . Currently, we respectively setRL andRH to be the 70th and 90th percentiles in all our experiments.
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Fig. 5. The graph model of the Markov network. The observation nodesys andyt use the initial normal estimates.

In graph cuts, they are encoded into the data term in the energy minimization function. In tensor belief propagation,

they are encoded as tensor messagesms andmt. A second-order symmetric tensor can be interpreted as a 3D

ellipsoid. A stick tensor is an elongated ellipsoid, and hence the shapes ofms andmt shown above. Messages

are updated and propagated during the iterative procedure,where the shapes of the tensor messagesmst andmts

change progressively.

where

Ai,s = Iilk,x − Ikli,x, Bi,s = Iilk,y − Ikli,y, Ci,s = Iilk,z − Ikli,z

are constants. Givenk − 1 ≥ 3 ratio images, we havek − 1 such equations for each pixel. We

can solve for[nx ny nz]
T by singular value decomposition (SVD) which explicitly enforces the

unity constraint:||Ñs|| = 1.

To demonstrate that the ratio image approach does not work for sparse input in the presence of

shadows, highlight, and inaccurate estimation in light direction, we randomly pick five images

from one of our dataset (Teapot) and use each of them in turn as the denominator image to

estimateÑs at each pixel. As shown in Fig. 4, all five normal maps producedare unsatisfactory

compared with the one produced by our dense input, because noimage in the sparse subset is

a good denominator image. The dense input provides adequatedata redundancy to allow us to

choose the best denominator image.

In practice, however, the best denominator image is not perfect because the input can be

very noisy. Moreover,Ñs estimated at each pixel does not take any advantage of neighborhood

information. As we shall show, smoothing technique cannot be done because the underlying dis-

continuities will also be smoothed out. By using an explicitdiscontinuity-preserving function,

in this paper, we propose to perform MRF refinement to infer the piecewise smooth normal field

while preserving discontinuities. In the following sections, the estimated̃Ns is used to encode

the data term for energy minimization using graph cuts (section V) and the local evidence for

tensor belief propagation (section VI). Now, let us define the MRF model for dense photometric

stereo.
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Fig. 6. The robust function for encoding the discontinuity-preserving function: plotting the Lorentzian function

log(1+ 1

2
(x

σ
)2) vs. x with (a)σ = 0.005, (b)σ = 0.0005, (c) Our modified Lorentzian functionlog(1+ 1

2
( |x|

σ2 )) with

σ = 0.05. In all cases, the curves are bounded whenx → ±∞, which is more robust than the usual norm-squared

function (i.e. the unboundedx2) in terms of encoding the error term.

The MRF model for dense photometric stereo Shown in Fig. 5 is a Markov network which

is a graph with two types of nodesX andY : A set of hidden variablesX = {xs} and the set of

observed variablesY = {ys}. The posterior probabilityP (X|Y ) is defined by:

P (X|Y ) ∝
∏

s

ϕs(xs, ys)
∏

s

∏

t∈N(s)

ϕst(xs, xt) (4)

whereϕs(xs, ys) denotes the local evidence, andϕst(xs, xt) denotes the compatibility function.

N(s) denotes the first-order neighborhood of nodes.

To derive the MRF formulation for dense photometric stereo,we setX = N whereN is the

set of normals visible to the camera (normal configuration) andY = I whereI is the dense set

of input images. We obtain

P (N|I) ∝
∏

s

exp

(
−φs(Ns, Ñs)

2σ2
1

)
∏

s

∏

t∈N(s)

exp

(
−φst(Ns, Nt)

2σ2
2

)
(5)

whereNs is the normal at nodes,Nt is the normal at nodet where(s, t) are neighboring nodes.

Theσ’s are used to control the the extent of the corresponding Gaussians. We define

φs(Ns, Ñs) = ||Ñs −Ns|| (6)

to measure the conformityNs to the initial normal estimatẽNs at locations.

We use a robust function, the Lorentzian function, to modelφst:

Rf(x, σ) = log

(
1 +

1

2

(
x

σ

)2
)

(7)

wherex = ||Ns −Nt|| is a discontinuity-preserving metric [20]. Fig. 6 shows some plots of the

Lorentzian function whose shape can be controlled by adjusting theσ parameter.φst is defined

as

φst(Ns, Nt) = log

(
1 +

1

2
(
||Ns −Nt||

σ
)2

)
. (8)

which penalizes the assignment of significantly different normal orientations.
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V. ENERGY M INIMIZATION USING GRAPH CUTS

The graph cut algorithm is a widely adopted MRF technique in computer vision. Despite the

desirable properties and the availability of a fast and simple implementation with a theoretical

guarantee [20], there has been no previous work on the use of graph cuts to address the (dense)

photometric stereo problem.

In this section, we formulate the problem of dense photometric stereo into one of graph cuts.

Let N = {α1, α2, · · · , αD} be the pixelwise normal configuration of the scene, given a set of

photometric imagesI = {I1, I2, · · · , Ik} each has a total ofD pixels. Recall from (4) that the

MRF model for photometric stereo for normal reconstructionis:

P (N|I) ∝
∏

s

ϕs(Ns, Ñs)
∏

s

∏

t∈N(s)

φst(Ns, Nt) (9)

If we take the logarithm of (9), we obtain

E(N ) =
∑

s

− logϕs(Ns, Ñs) +
∑

(s,t)

− logφst(Ns, Nt)

=
∑

s

D(Ns, Ñs) +
∑

(s,t)

V (Ns, Nt)

= Edata(N ) + Esmoothness (N ). (10)

where the functionsD andV are energy functions to be minimized by graph cuts.D andV are

respectively called the data term and the smoothness term ingraph cuts, which relate respectively

to the local evidence and compatibility function of the corresponding MRF model.

In the realm of graph cuts, we seek an optimal normal configuration N ∗. Let L be a set of

labels corresponding to the set of all discrete normal orientations. The discrete labels correspond

to the vertices on a subdivided icosahedron which guaranteeuniform distribution on a sphere [2].

To increase precision, we follow [2] to subdivide each face of an icosahedron recursively in a

total of 5 times (Fig. 3), so that|L| = 5057. From our experimental results, it gives seamlessly

smooth surface normals on a sphere.

A. Energy function

Our energy function for graph-cut minimization consists ofthe data and the smoothness terms.

Data term Because our input consists of images and light directions only, our data term should

measure the per-pixel difference between the measured and the estimated ratio images by using

(3). However, this will produce a large number of summationsin the data term due to plane

fitting. As pixel intensity is significantly governed by the pixel’s normal, we can instead measure
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the difference between the initial normalÑs and the normalNs at pixels estimated in the current

iteration during the graph-cut minimization (i.e., the currentα-expansion[20]). Let N̂w be the

normal indexed by the labelw ∈ L. We define our data term as the following:

Edata(N ) =
∑

s

Ds(αs) =
∑

s

||Ñs − N̂αs
||. (11)

Smoothness term On the other hand, the smoothness term should measure the smoothness

of the object surface while preserving the underlying discontinuity. To define the discontinuity-

preserving smoothness term, we employ themodifiedLorentzian function as the robust function

(c.f. (7)):

R̂f (x, σ) = log(1 +
1

2
(
|x|
σ2

)) (12)

This function has a similar shape to the original Lorentzianfunction (Fig. 6). The modified

Lorentzian function is necessary to make the energy function regular so that it can be graph-

representable. The proof is given in the next section. We define our smoothness term as:

Esmoothness (N ) = λ
∑

t∈N(s)

Vs,t(αs, αt) (13)

= λ
∑

t∈N(s)

log

(
1 +

||N̂αs
− N̂αt

||
2σ2

)
(14)

whereλ =
σ2

1

σ2

2

is a constant resulting from the logarithmic transformation in (10), andN is the

first-order neighborhood ofs. The setting ofλ depends on the scene and how much discontinuity

to be preserved. ForTeapot, λ = 0.5 andσ = 0.4.

B. Graph construction and proof of convergence

To perform multi-labeling minimization, the expansion move algorithm [20] is one suitable

choice. Here, we have a quick review on this algorithm:

α-expansion For each iteration, we simply select a normal direction label α ∈ L, and then

find the best configuration within thisα-expansion move. If this configuration reduces the user-

defined energy, the process is repeated. Otherwise, if thereis noα that decreases the energy, we

are done.

According to [20], the user-defined energy function has to beregular and thus graph repre-

sentable so that it can be minimized via graph cuts (in a strong sense). This is also true for

|L|-label configuration ifα-expansion is employed. More precisely, for our|L|-label case, the
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energy function has to be regular for eachα displacement. In this connection, we will prove that

our energy functionE is regular in the following:

For any classF2 function of the form defined in [20]:

E(x1, ..., xδ) =
∑

i

Ei(xi) +
∑

i<j

Ei,j(xi, xj) (15)

where{xi|i = 1, ..., δ} andxi ∈ {0, 1} is a set of binary-valued variables.E is regular if and

only if

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0). (16)

From [20], it is known that any function of one variable is regular and hence the data term

Edata is regular. Therefore, it remains to show that the smoothness termEsmoothness satisfies (16)

within a move. We prove the following claim onV which makesE regular. This claim also

allows for the more efficientα-expansion which runs inΘ(|L|) time [20].

Claim: Vs,t is a metric.

The proof is as follows. In order thatV is a metric, for any labela1, a2, a3 ∈ L, the following

three conditions have to be satisfied:

V (a1, a2) = 0 ⇔ a1 = a2

V (a1, a2) = V (a2, a1) ≥ 0

V (a1, a2) ≤ V (a1, a3) + V (a3, a2)

Since the first two conditions are trivially true for ourEsmoothness , we shall focus on the third

condition here. LetKij = ||N̂ai
− N̂aj

||. For any adjacent pair of pixelss andt, we write:

Vs,t(a1, a3) + Vs,t(a3, a2) − Vs,t(a1, a2)

= log
(
1 +

K13

2σ2

)
+ log

(
1 +

K32

2σ2

)
− log

(
1 +

K12

2σ2

)

= log

(
(1 + K13

2σ2 )(1 + K32

2σ2 )

1 + K12

2σ2

)
(17)

If the expression inside the logarithm of (17) is greater than or equal to1, (17) is greater than or

equals to zero. It is in fact true:

(
1 +

K13

2σ2

)(
1 +

K32

2σ2

)
−
(
1 +

K12

2σ2

)

=
1

2σ2

(
K13 +K32 −K12 +

K13K32

2σ2

)
≥ 0 (18)
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Note thatN̂a1
− N̂a3

, N̂a3
− N̂a2

andN̂a1
− N̂a2

are three vectors projected onto the same

plane defined by the pointŝNa1
, N̂a2

and N̂a3
, which form a triangle on the plane. By the

triangle inequality,K13 + K32 − K12 must not be less than zero, and hence the third metric

condition holds.

SinceVs,t is a metric,Vs,t(α, α) = 0 andVs,t(αs, αt) ≤ Vs,t(αs, α) + Vs,t(α, αt), the smooth-

ness termEsmoothness is regular [20]. To minimize our energy function in eachα displacement,

we can construct a graph by using [20], followed by applying the max-flow algorithm [8].

VI. M AXIMUM A POSTERIORI ESTIMATION BY TENSORBELIEF PROPAGATION

Although the graph-cut minimization described in the previous section for dense photometric

stereo has a theoretical guarantee, in which the minimized energy corresponds to the global

optimal solution “in a strong sense” [20], as we shall show inthe comparison and result sections,

the algorithm takes considerable amount of time (in minutes) to run due to the large number of

α-expansions necessary for minimizing the energy function.

In this section, we study an alternative MRF inference algorithm to address the dense pho-

tometric stereo problem. In belief propagation, messages are propagated and combined in a

Markov network. There are two common estimators for belief propagation: MAP and MMSE

(minimum mean square error). In discrete labeling, the MAP estimator assigns discrete labels

as messages, which are propagated and updated in each iteration. The max-product algorithm

is often used in combining the propagated messages. MMSE estimator weighs marginal prob-

abilities and produces an optimal solution at sub-pixel precision. MMSE uses sum-product to

compute the marginal probabilities. Comparison with MAP and MMSE on geometric stereo

were made in [39].

In photometric stereo, the traditional belief propagationis inefficient if discrete labels are used

in encoding a message. Suppose we still subdivide an icosahedron to produce5057 labels for

each message, gigabytes of memory is required for a typical image(256 × 256). The memory

required by sum-product and max-product are similar.

Inspired by tensor voting [26], we propose to applytensor belief propagation, which uses a

very compact representation for a message by encoding it into a compactsymmetric tensorto

store the second-order moment collection of the estimated normal directions. Note that the light

source used in photometric stereo is located above the object, so the normals inferred should

have a consistent orientation toward (or away from) the light source and hence the orientation

is known in advance. Second-order moments are used in our message passing to simplify the
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inference by making the tensor symmetric. We can simply flip the inferred normal after the

estimation if needed.

In fact, tensor belief propagation is a special case of tensor voting where the spatial neighbor-

hood is restricted into the first-order neighbors (given by the image grid structure). Although

tensor belief propagation does not have a strong theoretical guarantee similar to graph-cut min-

imization, for all our experiments, we found that the normalmaps produced by tensor belief

propagation and graph cuts are comparable, while tensor belief propagation runs much faster (in

a few seconds) than graph-cut minimization.

Since 3D normals are inferred, the tensor we use is a3 × 3 symmetric matrix. Hence, the

storage requirement for each message is reduced drastically to a hundred bytes or less. Using

tensor as messages also changes our solution space from one of discrete to continuous.

Given a Markov network whereX = {xs} is the set of hidden nodes andY = {ys} is the

set of observed nodes (Fig. 5), letms(xs) be the message received at nodexs from nodeys and

mst(xs, xt) be the message that nodexs sends to nodext. Initially, each pixel has an estimate of

the normal directioñNs (Section IV). We representms(xs) by the stick tensor of̃Ns, i.e. ÑsÑ
T
s .

The message passing algorithm is described below:

A. Algorithm

1. Initialize all messagesmst(xs, xt) as a3 × 3 identity matrix (i.e. a ball tensor without

preferred orientation is used to denote uniform distribution) andms(xs) = ÑsÑ
T
s (i.e. a stick

tensor to indicate initial belief in the normal orientationfor pixel s).

2. Update messagesmst(xs, xt) iteratively fori = 1 : T whereT is the number of iterations:

2.1 Find the current normal with the highest probability

bis(xs) = ms(xs) +
∑

xk∈N(xs)

mi
ks(xk, xs) (19)

N i
s = ê1[b

i
s(xs)] (20)

where ê1[bs(xs)] is the unit eigenvector associated with the largest eigenvalue of the tensor

bs(xs).

2.2 Compute new messages

mi+1
st (xs, xt) = ϕst(N

i
s, N

i
t )



normalize[ms(xs) +
∑

xk∈N(xs )\xt

m
i

ks
(xk , xs)]



 (21)

where the normalization of a tensor scales all eigenvalues so that the largest one equals to 1.

Notice that the compatibility functionϕst(N
i
s, N

i
t ) controls the strength of the message passed
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to xt. When the angle betweenN i
s andN i

t is small,φst(Ns, Nt) in (8) tends to 0 and hence

ϕst(N
i
s, N

i
t ) tends to 1 and vice versa. Therefore, discontinuity betweenxs andxt can be pre-

served via controlling the strength of the messages passingbetween them. Furthermore, in the

presence of discontinuity, the behavior of the compatibility functionϕst(N
i
s, N

i
t ) can be adjusted

by theσ in (8), whereσ = 0.5.

3. Compute beliefs

bs(xs) = ms(xs) +
∑

xk∈N(xs)

mT
ks(xk, xs) (22)

Ns = ê1[bs(xs)] (23)

In steps 2.1 and 3 we perform eigen-decomposition onbs to obtain the majority direction,

given by ê1, the eigenvector corresponding to the largest eigenvalue.It is similar to tensor

voting [26] for inferring the most likely normal in surface reconstruction from a 3D point set.

Fig. 5 illustrates the Markov network (graph) with messagespassing in a neighborhood. The

initial normal estimates̃Ns, Ñt are passed to the hidden nodes, which will be encoded respec-

tively into a stick tensor for representingms(xs) andmt(xt) respectively. Messages are updated

and passed amongx’s accordingly.

The computational and storage complexities of our algorithm areO(TD) andO(D) respec-

tively, whereD is the number of pixels andT is the number of iterations. For an image of size

512 × 512, it takes roughly 2 seconds only for each iteration on a Pentium-IV 3.2G PC with

512M memory.

It is worth noting that a method based on belief propagation was proposed in [33], which

enforces surface integrability for surface reconstruction from normals. A Markov graph model

was used where local evidence at each observation node is encoded by initial surface gradient

estimated by any photometric stereo or shape-from-shadingalgorithms. Message passing is

implemented by the sum-product algorithm which computes the MAP estimate of the unknown

surface gradient at each pixel. Note that both [33] and our method use a graph model. Our tensor

belief propagation directly estimates normals and explicitly preserves discontinuities via a robust

function, while [33] refines the initial noisy surface gradients by enforcing the integrability

(smoothness) constraint and does not use explicit discontinuity-preserving function.

B. Analysis

In our tensor message passing scheme, the tensors interact with each other when a new mes-

sage is generated. Let us consider the following scenarios,using 2D tensor for illustration
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because the 3D case is analogous. After summing up the tensormessages and performing eigen-

decomposition, a 2D tensor has the form

[
ê1 ê2

]


λ1 0

0 λ2






êT
1

êT
2


 (24)

whereλ1, λ2 (λ1 ≥ λ2 ≥ 0) are the eigenvalues and̂e1, ê2 are the associated eigenvectors.

Graphically, a 2D tensor can be represented as an ellipse with λ1ê1 andλ2ê2 corresponding to

the oriented semimajor and semiminor axes respectively.

Note that a stick tensor is one withλ2 = 0, which is used to encode absolute orientation

certainty. A ball tensor is characterized byλ1 = λ2, and is used to encode absolute orientation

uncertainty. Let us consider the following combinations when tensor messages in the extreme

cases are added together:

1. Both messages are stick tensors. There are two scenarios: (a) When bothê1’s in the two

tensors are identical, the resulting tensor will have the same eigen-vector but a largerλ1, in-

dicating that we have a higher confidence forê1 being the most likely normal direction. (b)

Otherwise, the tensor becomes an ellipse, with the resulting ê1 after eigen-decomposition still

being the most likely direction, and with an uncertainty in direction, encoded as the orthogonal

directionê2 with uncertaintyλ2.

2. One message is a stick tensor, the other message is a ball tensor. This case is similar to

scenario (b) of case (1).

3. Both messages are ball tensors. The resulting tensor is still a ball tensor because the two

tensors do not have any preferred direction.

VII. SURFACE RECONSTRUCTION FROMNORMALS

The normals obtained after MRF refinement are used to recoverthe underlying surface. In

this section, we propose a simple height generation algorithm which is empirically shown in the

result section to produce an adequate surface given the normals recovered by our method.

Suppose the height at locations is hs. The normal ats can be rewritten into:

Ns =
1

√
1 + p2

s + q2
s

[−ps,−qs, 1]T (25)

whereps = ∂hs

∂x
= −nx

nz
andqs = ∂hs

∂y
= −ny

nz
. Many traditional approaches for surface recon-

struction from normals are based on integration, and the integrability or the zero curl constraint

needs to be enforced. Very often, enforcing integrability is translated into minimizing|| ∂p

∂y
− ∂q

∂x
||2
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at each pixel [9]. Assume that all partial derivatives satisfy the integrability constraint, integra-

tion [9] can be applied to reconstruct the surface.

However, the normal maps obtained by using our method are notguaranteed (or needed)

to be integrable everywhere because fine details and discontinuities are preserved in the map.

To reconstruct the surface, one may apply [33] to alter the surface normals when necessary to

satisfy the constraint. Another way to reconstruct the surface is to apply the shape from shapelet

approach [21]. While a decent surface can be obtained by these methods, the methods are

somewhat complicated. Here, we describe a simple method which is an analog of [4] and [10]

to reconstruct a surface.

The idea of the method is here: the residual of the reconstructed surface at a pixel location

should be minimized when all integration paths are considered. Given a first-order neighbor pair

s andt, the residual of the heighths with respect toht is defined by the difference between the

estimatedhs and the height integrated starting fromt:






(hs − ht + ps)
2, if t = t1 is the left neighbor

(hs − ht − pt)
2, if t = t2 is the right neighbor

(hs − ht + qs)
2, if t = t3 is the up neighbor

(hs − ht − qt)
2, if t = t4 is the bottom neighbor

(26)

The total residualE of the reconstructed surface is defined by:

E(h) =
∑

s

((hs − ht2 − pt2)
2 + (hs − ht4 − qt4)

2) (27)

Since each individual residual is a convex function,E is also a convex function. Any optimiza-

tion method for convex optimization such as the gradient decent method can be used to minimize

E to obtainh. In our implementation,E is minimized by setting its first derivative with respect

to hs equal to zero. Thenhs is solved iteratively. In each iteration, for eachs, we estimatehs

by solving∂E(h)/∂hs = 0 until the algorithm converges. All the surfaces in this paper are

produced by this simple method, which are comparable to the results generated by [21] used

in [38], [46].

VIII. C OMPARISON

This section compares tensor belief propagation (TBP) and graph cuts (GC) using synthetic

and real data where ground truths are available. Recall thatboth inference algorithms are based

on the identical MRF model.
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(a) (b) (c) (d) (e) (f)

Fig. 7. Three spheres. (a)–(b) Two views of the input images. (c)–(e) Normals reconstructed by graph-cut mini-

mization. (f) The ground truth. For ease of visualizing the recovered normals, in (c)–(f), we make the object Lam-

bertian by displayingN ·L for each pixel, whereN is the recovered normal observed at a pixel ,L = [ 1√
3

1√
3

1√
3
]T

for (c),L = [− 1√
3
− 1√

3

1√
3
]T for (d) andL = [0 0 1]T for (e)–(f).

A. TBP vs. GC: synthetic data

We first use the synthetic exampleThree sphereswhere a total of 305 images are sampled. As

shown in Fig. 7, the reflectance captured by the images contain a lot of specular highlight and

shadows. The following is the evaluation procedure and the comparison results are summarized

in Table I.

1. Obtain the ground truth normal map illuminated atL = [0 0 1]T (otherL will render the

(N · L) image too dark at certain pixels. See Fig. 7).

2. For various amount of additive Gaussian noises to the estimated light directions,

(a) Run tensor belief propagation to obtain the normal map illuminated atL.

(b) Run energy minimization by graph cuts to obtain the normal map illuminated atL.

(c) In both cases, note the running time, the number of iterations, and compute the (N · L)

image as defined in the caption of Fig. 7.

According to Table I, the results and errors produced by graph cuts and tensor belief propaga-

tion are comparable while the running time of the graph cuts method is much longer. Note that

both approaches can tolerate significant estimation error in lighting direction (up to a standard

deviation (SD) of 15 degrees). In practice, such a large estimation error seldom occurs. Note

that the smallest mean error that we can produce is about 4 degrees. This is because some of the

surface patches are affected by shadow and specular highlight for most of the time (e.g., the sur-

face patches along the silhouette of the largest sphere, whose normals are nearly perpendicular

to the focal plane, are shadowed nearly half of the time). Nevertheless, the estimation accuracy

in both algorithms are still very high.
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Standard deviation (SD) 0◦ 15◦ 30◦ 45◦

TBP

mean error (in deg) 4.0417 4.1008 21.9630 32.187

running time 23.49s 20.89s 33.89s 11.78s

no of iterations 105 89 141 54

GC

mean error(in deg) 4.041 4.0905 22.0260 32.1950

running time 9m56s 9m52s 10m02s 9m58s

no of iterations 2 2 2 2

TABLE I

COMPARISON OFTBP AND GC ON Three spheres. THE EFFECT OF PERTURBATION OF LIGHT DIRECTIONS ON

THE MEAN ERRORS OF THE RECOVERED NORMAL AND THE MAXIMUM PERTURBATION ANGLES ARE SHOWN.

THE GROUND TRUTH IS SHOWN INFIG. 7(F). THE EXPERIMENTS WERE RUN ON ACPU SERVER WITH4

AMD OPTERON(TM) PROCESSOR844 CPUAT 1.8GHZ AND 16G DDR-333 RAM.

B. The effect of MRF refinement

In the presence of complex geometry, shadows, highlight andother non-Lambertian phenom-

ena, MRF refinement is crucial to produce good normal results. Fig. 8 compares two normal

maps and the resulting surfaces forTeapot: one is produced by the ratio image approach de-

scribed in section IV, the other is produced, in addition, using our discontinuity-preserving

MRF refinement (GC is used here). Note that the MRF refinement eliminates the errors caused

by complex albedos while preserving all subtle geometry including the air hole and the ripple

patterns of the teapot. Note that theN · L image depicted here is for display purpose, and exist-

ing 2D and 3D anisotropic diffusion or discontinuity-preserving methods cannot be applied to

our normal map, where each 2D pixel location refers to a 3D normal.
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(a) (b)

Fig. 8. The effect of MRF refinement forTeapot. (a) The noisyN · L image is produced by the least-square

solution of the system of equations given by the ratio image approach described in section IV (i.e., without MRF

refinement). The other image is produced by our MRF algorithm(GC). (b) Comparison of the generated surfaces

from normals, without and with MRF refinement respectively.

Data set Image size Number of images # TBP iterations TBP running time # GC iterations GC running time

Snail 134 × 240 2074 98 25.02s 2 560s

Cleopatra 159 × 240 2517 65 82.30s 2 695s

Teapot 188 × 202 3165 304 175.47s 4 912s

Rope 171 × 144 2812 166 68.80s 3 614s

Transparency 212 × 209 3153 192 174.36s 3 820s

Face 223 × 235 1388 89 72.79s 4 986s

TABLE II

SUMMARY OF RUNNING TIMES. THE EXPERIMENTS WERE RUN ON ACPU SERVER WITH4 OPTERON(TM)

PROCESSORS844 CPUAT 1.8GHZ AND 16G DDR-333 RAM.

IX. RESULTS

As mentioned in the previous section, both inference algorithms produce comparable results

while belief propagation using tensor message passing runsmuch faster and converges to results

comparable to those in GC. In all cases, very faithful normals can be recovered. We also show

different views of the surfaces reconstructed using the recovered normals as input to our surface

reconstruction algorithm presented in section VII. We havetested very complex objects and

scenes containing a lot of highlight and shadows, and even objects with transparency to demon-

strate the robustness of our method. For visualization, thenormalN recovered at each pixel

is displayed using(N · L) whereL is the direction of a synthetic light, which allows for easy

detection by the human eye if any slight estimation error is present. Table II summarizes the

running times. Please also review our supplementary video for our results.

Comparison with ground truth: real data In Fig. 9, an exampleReal Sphereis shown. We

chose a spherical object because we can estimate the ground truth normal map of the object by

fitting a known sphere. Without considering the distortion resulting by perspective projection

of the camera and inaccurate estimations of light directions, the absolute mean angular error
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Fig. 9. Results onReal Sphere. From left to right: Three typical captured images ofReal Sphere. The recovered

normalN displayed asN · L with L = [ 1√
3

1√
3

1√
3
]T . The reconstructed surface rendered at a novel viewpoint.

The reconstructed surface from ground truth normals.

(a) (b) (c)

Fig. 10. Results onSnail. Three typical images we captured were shown in Fig. 1. (a) The reconstructed normals

N are shown asN ·L whereL = [ 1√
3
− 1√

3

1√
3
]T . (b) The surface reconstructed from the recovered normals.(c)

The result of displacement mapping on a cylinder, using the reconstructed surface.

produced in this case is19.36 degrees. Note that such a large absolute error for real case is due

to the presence of non-negligible ambient light and violation of Lambertian assumption. Ideally,

because the spherical object is opaque, half of the spherical object in the input images shown in

Fig. 9 should be totally invisible. But the strong ambient light makes it visible which offsets the

normal estimation. Because of this, the estimated normal tends to point upward resulting in a

large mean error. Despite that, our method preserves the overall structure very well. The result

looks visually good, and is indeed quantitatively faithfulto the original surface if measured on

an alternative metric: we defineEr to measure the structural difference between the estimation

and the ground truth:

Er =
1

Mr

∑

a=(s,t)

|θaψa+1 − θa+1ψa| (28)

whereMr is the total number of pixel pairs,θa is the angle between the neighboring normals at

s andt in the estimated normal map andψa is the angle between the neighboring normals ats

andt in the ground truth normal map. If(s, t) is a left-and-right neighbor pair,a + 1 = (t, u)

whereu is the right neighbor oft. The notation is applied similarly to up-and-down neighboring

pairs. Thus Eqn. 28 measures the mean of the angular ratio difference in local neighborhood,
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(a) (b) (c)

(d) (e) (f)

Fig. 11. Results onCleopatra. (a)–(b) Two typical images we captured. (c) The reconstructed normals visualized

asN ·L whereL = [− 1√
3

1√
3

1√
3
]T . (d) The reconstructed surface visualized at a novel viewpoint. (e) The zoom-in

view of the textured surface. (f) The result of displacementmapping on a synthetic cylinder, using the reconstructed

surface.

Fig. 12. Top: three typical captured images ofTeapotwhere complex geometry, texture and severe shadows are

present, and the recovered normalsN , each of them is displayed asN · L with L = [− 1√
3

1√
3

1√
3
]T . Bottom:

The reconstructed surface rendered at a novel viewpoint, the zoom-in view of the reconstructed surface, and the

zoom-in view of the actual object at the same viewpoint.
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Fig. 13. Top: Three typical captured images ofRopewhere complex geometry, mesostructures, textures and severe

shadows are present. Bottom, from left to right: the recovered normalsN , each of them is displayed asN · L

with L = [ 1√
3

1√
3

1√
3
]T . The reconstructed surface rendered at a novel viewpoint, and the zoom-in view of the

reconstructed surface.

Fig. 14. Top: three typical images forTransparency, where many assumptions in photometric stereo are violated:

shadows, highlight, transparency, spatially-varying albedos, and inter-reflections due to the complex geometry. Bot-

tom, from left to right: The recovered normalsN are very reasonable, displayed asN ·L whereL = [ 1√
3

1√
3

1√
3
]T ,

the reconstructed surface rendered at a novel viewpoint, and the zoom-in view of the textured surface.
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Fig. 15. Top: three typical captured images ofFacewhere complex geometry, texture and severe shadows are

present, and the recovered normalsN , each of them is displayed asN · L with L = [ 1√
3

− 1√
3

1√
3
]T . Bottom:

Reconstructed surface rendered at a novel viewpoint, and one view of the actual face captured at similar viewpoint.

and hence the neighborhood structure of the normal map. We found that, although the absolute

mean error is large,Er tends to zero (8.55 × 10−5), indicating that our method preserves the

neighborhood structure very well and the mean error is defined up to an known angular scale

factor. By brute-force searching, we found the optimal scale that gives the minimum mean error

of 3.87 degrees, instead of the absolute mean error of19.36 degrees.

Complex patterns with discontinuities In Fig. 10, note the high level of details achieved

in our reconstruction, where the cloud, snail and mushroom and other complex patterns are

faithfully preserved in the normal reconstruction despitethat cast shadows and highlight are

ubiquitous. The smooth surface and the underlying surface orientation discontinuities are faith-

fully restored. We also show the result of displacement texture mapping on a synthetic cylinder

by using our reconstructed surface and normals for this object. Fig. 11 shows another result in

this category.

Objects with complex geometry and albedos We show the reconstruction results for two

complex objectsTeapotandRopein Figs 12 and 13. The geometry and albedos of theTeapot

are very complex. Our method can faithfully reconstruct thenormal directions and shape of the
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teapot including the small air hole on the lid, while rejecting all noises caused by the complex

patterns, textures and colors of the teapot. Although theRopehas spatially-varying surface

mesostructures, the surface and normals are faithfully reconstructed.

Complex objects with transparency Finally, the example in Fig. 14 tests our system to the

limit. The toy is contained inside an open paper box, which casts a lot of shadows when the

object is illuminated on the three sides of the box. The toy iswrapped inside a transparent

plastic container. So when it is illuminated at other directions, a lot of highlight is produced.

Surface orientation discontinuities are ubiquitous in theobject. It is very tedious to choose the

right frames from more than 3000 frames we captured to perform sparse photometric stereo

and unbiased statistics is not guaranteed. On the other hand, our simple system which utilizes

dense but noisy measurement can effectively deal with theseproblems. The surface normals we

recovered are very reasonable under this complex situation.

Fig. 15 shows another complex example of aFacewhere complex geometry, fine structures

(hairs and pimples on the face) and transparency (eye glasses) are present. Observe that the eyes

below the glasses are successfully reconstructed. The discontinuity associated with the frames

of the glasses is still maintained. The pimple on the subject’s face close to his eye glasses has

been preserved in the surface reconstruction.

X. THE INVERSE PROBLEM: APPLICATION IN REAL-TIME RELIGHTING

Using the reconstructed surface from dense photometric stereo, we propose an inverse process

to synthesize novel images of the same scene under user-specified light source and direction.

This inverse process can be made to run in real time by employing current hardware technology,

and is better known as real-time relighting in computer graphics.

The ability in controlling illumination offers the user an experience of 3D realism. Recent

work [41] allows the captured video (dynamic sense) be composited with an new environ-

ment seamlessly. Environment lighting is considered and varying lighting conditions is allowed.

However, their method required an expensive and specially designed acquisition system. And,

real-time relighting may not be possible. Using our very simple set-up and photometric stereo

method, we address the inverse problem of real-time rendering by using compressed data.

Image-based relighting [43], [30] is a method to achieve real-time illumination computation

of arbitrarily complex scenes. It shifts the data acquisition (for real scene) or the time-consuming

illumination computation (for synthetic scenes) to a preprocessing stage and stores the results

in a compact form. During the run-time, illumination effects are achieved by real-time decom-

27



pression and composition. However, if per-pixel depth information is not available, photoreal-

istic relighting with interesting lighting effects such asillumination due to spotlight, point light

source, or slide projection cannot be correctly achieved [43]. On the other hand, the necessary

data for relighting basically consists of a dense image set captured under a moving distant light

source, which is exactly what our dense photometric stereo need for normal reconstruction. The

reconstructed surface is exactly what relighting need for producing versatile lighting effects.

The early work in image-based relighting has much restriction on the novel lighting config-

uration [11], [30]. The first representation,the apparent BRDF, that supports arbitrarily novel

lighting configuration is proposed by Wong et al. [43]. The representation is further generalized

to plenoptic illumination function[42]. Per-pixel spherical harmonics are used as a compact

solution for encoding the enormous relighting data in theirwork. Polynomial function [25],

wavelet [29], spherical radial basis function [23] were later proposed by other researchers as

the compact solutions. Unlike the rendering goal in computer graphics, researchers in computer

vision are more interested in recognition under various lighting conditions. Principal component

analysis is frequently used to extract a set of basis images from dense input images for recog-

nition purposes [5], [47], [27], [12]. These methods can be adapted for rendering purposes as

demonstrated by the recent work [31], [40], [14].

In this paper, we propose a hybrid, image-and-geometry-based approach which makes use of

the dense input (images) and the surface/depth map reconstructed from the recovered normals

(geometry) to perform real-time relighting for achieving visually plausible results. Without the

recovered depth map from our dense photometric stereo, we can only perform restrictive relight-

ing with distant light sources. This hybrid approach not only provides a unified way to simulate

distant and point light sources, but also achieves very fastframe rate by employing the state-of-

the-art graphics processing unit (GPU). In order to cope with the limited memory resource on

GPU, we adopt the PCA-based representation [14] as a compactsolution for rendering.

In the following we start by briefly reviewing the plenoptic illumination function, which is

sampled and obtained by processing the raw dense input images captured by the DV for the

purpose of real-time relighting. Note that the dense input images are used forboththe recovery

of depth map (using dense photometric stereo) and the radiance data encoding (using PCA-

based approach). As the dense photometric stereo has been covered in the previous sections, we

shall focus on the PCA-based encoding of radiance data in thefollowing subsections. During

the rendering, both the recovered surface and PCA-encoded radiance data are loaded into GPU

memory. A unified GPU approach for real-time relighting thatsupports both distant light source,
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Fig. 16. A divide-and-conquer approach is used to make the computation tractable and facilitate parallelism.

point light source, and even the slide projection, is described. Finally, we present our relighting

results using a wide range of synthetic lighting set-up.

A. The Plenoptic Illumination Function

Image-based relighting is grounded on theplenoptic illumination function, which is extended

from the plenoptic function [1] to include the illuminationcomponent [42]:

I = PI(lx, ly, lz, vx, vy, vz, x, y, z, t, λ), (29)

The function describes the radianceI received along any viewing direction(vx, vy, vz) ob-

served at any viewpoint(x, y, z) in space, at any timet and over any range of wavelengthλ.

L = (lx, ly, lz) specifies the direction of a distant light source illuminating the scene, andt is the

time parameter. This function encodes how the environment looks like when the viewpoint is

positioned at(x, y, z) under illuminationL. When the viewpoint and time parameters are fixed,

the discrete version of the plenoptic illumination function reduces to the dense input for our

dense photometric stereo. To relight an image, we apply the following at all pixels on the three

color channels respectively:

P∗
I (lx, ly, lz)Lr(x, y, z, lx, ly, lz), (30)

whereP∗
I (lx, ly, lz) is the result of interpolating the dense samples given the desired light vector

(lx, ly, lz) (other parameters inP∗
I are dropped for simplicity),Lr is the radiance along(lx, ly, lz)

due to the light source, and(x, y, z) is the position where radiance is reflected. This is a local

illumination model with three parameters: the direction, the color, and the number of light

sources.

B. Unified GPU approach for real-time relighting

The major issue in image-based relighting also present in our hybrid approach is the enor-

mous storage requirement. Note that traditional image compression methods such as JPEG is
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(a): (b):

Fig. 17. Our unified approach for (a) distant-source and (b) point-source relighting, which are translated into per-

pixel table-lookup and multiplication, highly suitable for hardware implementation. (a) To reconstruct (relight) an

image block under directional illumination, each data vector (row) of M is a linear combination of rows (eigenim-

ages) inB. (b) Under the illumination of a point light source for whichspotlight and slide projector are specific

cases, relighting coefficients are sampled from multiple rows because the light directionL at each pixel is different.

L is obtained from the depth map inferred from the normals reconstructed using our robust photometric stereo.

not applicable due to their lack of random-accessibility. In order to achieve real-time and com-

plex lighting effects, the relighting engine should be capable of randomly accessing pixel values

scattered all over the compressed data. In this section, we first review our illumination-adjustable

representation [14] that facilitates the implementation on GPU for encoding a plenoptic illumi-

nation function [42] in order to achieve photorealistic relighting at high frame rate. Aunified

GPU computation framework is then proposed for both distant, point (or spotlight) and slide

projector sources, which is made possible by our dense photometric stereo technique.

Principal component analysis (PCA) First, we preprocess the input data in order to maxi-

mize the correlation among neighboring data. Recall that our input is a set of images taken at

the same viewpoint, but illuminated by a distant light source along different directions. Each

captured image corresponds to a point on the light directionsphere. After resampling, a total

of k images is obtained. We observe that the luminance of thek corresponding pixel values are

highly correlated, due to the smooth change in radiance reflected from the same surface element

visible at a pixel. Therefore, principal component analysis can be applied to reduce the data

dimensionality. First, each 2D image is linearized to an 1D array of pixel values, which we call

data vectors. Then, all data vectors are stacked to form a data matrixM . The size of this matrix

is prohibitively large. For example, for a greyscale image of 256× 256 sampled underk light-

ing conditions, the data matrix is of size k× 65535. It is not feasible to compute the principal

components from this huge matrix.

A divide-and-conquer approach is therefore adopted to subdivide the images into blocks. Mul-

tiple blockwise PCAs are applied on the corresponding blocks. If each image is subdivided

into w blocks, we performw blockwise PCAs (see Fig. 16). With this block-based approach,
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(a) (b)

Fig. 18. (a) Point-Source relighting (b) slide projector source. L is different for each pixel under point-source

illumination

(a) (b) (c) (d)

Fig. 19. Relighting results forTeapotandFaceusing a synthetic distant light source to simulate the actual illumi-

nant used in data capturing. (a) and (c) are real, (b) and (d) are our synthetic relighting results. They are visually

indistinguishable.

the computation becomes tractable and the memory requirement is also reduced. Moreover,

the computation can be parallelized easily. The block-wisePCA also helps in capturing high-

frequency features, like highlight and shadows, with fewernumber of principal components.

Interestingly, while shadows and highlight are treated as noises in photometric stereo recon-

struction, they are important cue for photorealism during relighting. In our relighting system,

we choose a block size of 16× 16.

By applying PCA to the data matrixM , M can be well approximated byM basis images

and their corresponding coefficients, whereM ≪ k. The data volume is drastically reduced by

keeping onlyM eigenimages and the relighting coefficients. Now,M can be expressed by the

product of two matricesA andB, where the dimension ofA is k×M andB isM× q, whereq

is the block size.

Distant-source Relighting Every row ofM (image block) is a linear combination of all the

rows in B. The corresponding weights are kept in a row inA (see Fig. 17(a)). We call the

rows inB the basis images oreigenimagesand the weights inA therelighting coefficients. The

distant-source relighting can be expressed compactly by

I(L) =
∑

j

cjBj (31)

whereI is the image block relit under distant illuminationL, Bj is thej-th eigenimage, andcj
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Fig. 20. Relighting results forCar, Snail, andCleopatrausing a synthetic point and slide projection sources.

is thej-th relighting coefficient in one row ofA, which is indexed byL. In case the desired

L is not sampled, interpolation using the closest neighbors will be performed to reconstruct the

desiredI. Given a distant source with directionL, each pixel is relit with the same light vector

L. Hence, the relighting coefficientscj are the same for all pixels in an image block. In other

words, distant-source relighting is actually the linear combination of eigenimage blocksBj with

cj as weights. Such linear combination can be performed in real-time on modern GPU by storing

eigenimages and relighting coefficients as textures.

Point-Source Relighting Despite the use of a directional illuminant (simulated by a distant

spotlight) during the capturing phase, the captured data can be employed to simulate the illu-

mination due to a point source, spotlight and slide projector source. Unlike the distant-source

relighting, the light directionL observed at each pixel is different (as explained in Fig. 18). To

obtainL = S − Sp at a surface pointSp, whereS is the given position of the point light source.

Sp can be derived from the reconstructed surface or the depth map of the scene. Thus, relight-

ing using a point source is now readily achieved, which is otherwise impossible because the

surface geometry is either unavailable or difficult to obtain in complex situation using standard

techniques.

Now, becauseL is different for each pixel, the relighting coefficient for each pixel is therefore

also different. To relight an image block, relighting coefficients are sampled fromdifferentrows

of A, again indexed by differentL for each pixel inBj :

I(L) =
∑

j

Aj(L )Bj (32)
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where eachAj(L) is a 2D map of relighting coefficients, whose dimension is thesame as that

of an eigenimage blockBj . L is used to indicate the set of light direction vectors at all pixels in

I. In other words, the point-source relighting is actually apixel-wiselinear combination of two

imagesAj(L ) andBj. (32) represents the per-pixel table-lookup and multiplication to relight

an image under point source illumination, as illustrated inFig. 17(b). Again such per-pixel

operations can be efficiently implemented on modern GPU.

Results Our GPU relighting was implemented and run on a 3.2GHz PC with512M memory,

and GeForce FX5900 graphics board with 256MB video memory. Fig. 19 shows the results for

relightingTeapotandFaceusing a synthetic distant light source which is made to simulate the

actual handheld illuminant used in data capturing to test the correctness of our implementation

of the distant-source relighting. Fig. 20 show the results for relightingCar, Snail, andCleopatra

using a synthetic point and a slide projector source respectively, where we can achieve a very

high frame rate of 75 for point-source relighting, and 37 forslide-projector-source relighting,

which are both suitable for time-critical applications like computer games. Note the relighting

results of the slide projector source that uses a circular stop sign, whose projection on the object

changes according to the surface geometry of the object, which is derived from the surface

reconstructed from our recovered normal map. Please refer to our supplementary video.

XI. CONCLUSION

In this paper we formulate the problem of dense photometric stereo using the MRF frame-

work. Using the identical MRF model, we propose and compare two inference algorithms for

estimating the MAP solution: graph cuts and tensor belief propagation. For high-precision

message passing in our dense photometric stereo problem, traditional belief propagation is in-

tractable if the set of discrete labels is large, while the graph cut algorithm converges in very few

iterations. Tensor message passing for belief propagationis proposed which drastically reduces

the running time and storage requirement, and it runs fasterthan graph cuts with comparable

results. Faithful per-pixel normal maps are inferred by both algorithms. Finally, we exploit the

inferred normals and the reconstructed surface to perform real-time relighting where distant,

point, spotlight and slide projector light sources can be uniformly handled and very fast frame

rate can be achieved. Our future work consists of more investigation on the surface reconstruc-

tion algorithm and analysis of the efficacy of the available dense information.
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