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Abstract

We address the problem of robust normal reconstructiotdmgse photometric stergim the presence of com-
plex geometry, shadows, highlight, transparencies, bbr@tenuation in light intensities, and inaccurate estiom
in light directions. The inputis a dense set of noisy photiriménages, conveniently captured by using a very sim-
ple set-up consisting of a digital video camera, a refleativeor sphere, and a handheld spotlight. We formulate
the dense photometric stereo problem as a Markov netwoddnaestigate two important inference algorithms for
Markov Random Fields (MRFs) — graph cuts and belief propagat to optimize for the most likely setting for
each node in the network.

In thegraph cutalgorithm, the MRF formulation is translated into one ofigyaminimization. A discontinuity-
preserving metric is introduced as the compatibility fimetwhich allowsa-expansion to perform efficiently the
maximum a posteriori (MAP) estimation. Using the identidahse input and the same MRF formulation, our
tensor belief propagatioalgorithm recovers faithful normal directions, preservaderlying discontinuities, im-
proves the normal estimation from one of discrete to cowtirsyi and drastically reduces the storage requirement
and running time. Both algorithms produce comparable anyg faéthful normals for complex scenes. Although
the discontinuity-preserving metric in graph cuts perrefticient inference of optimal discrete labels with a the-
oretical guarantee, our estimation algorithm using tehsdief propagation converges to comparable results but
runs faster because very compact messages are passed didembridVe present very encouraging results on nor-
mal reconstruction. A simple algorithm is proposed to restarct a surface from a normal map recovered by our
method.

With the reconstructed surface, an inverse process, knewaelighting in computer graphics, is proposed to
synthesize novel images of the given scene under userfigndht source and direction. The synthesis is made to
run in real time by exploiting the state-of-the-art gragtpeocessing unit (GPU). Our method offers many unique
advantages over previous relighting methods, and can éandlde range of novel light sources and directions.
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. INTRODUCTION

Since Woodham [44] proposezhotometric sterethere has been extensive theoretical and
experimental research on the problem. While approachdsatometric stereo using two views
with known albedos [44], three views [15], four views [7]5]3[3], more views [22], complex
reflectance models [28], [37], [18], [35], lookup tables]445], reference objects [16], [13],
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[10], and novel object representation [4] have been redppbotometric stereo is still consid-
ered to be a difficult problem in the presence of shadows aacigar highlights, and for objects
with complex material and geometry.

Inspired by [24] where robust stereo reconstruction waseaeld by using alenseset of
images, and by [36] in whichMarkovnetwork was used to formulate the problem of geometric
stereo reconstruction, in this paper, we propose to addnesproblem of dense photometric
stereo by employing the Markov Random Field (MRF) approactetonstruct dense surface
normals from a dense set of photometric images, which carobeeaiently captured using a
very simple set-up consisting of a handheld spotlight, a&céfte mirror sphere and a digital
video (DV) camera. Our approach not only infers the piecewsimooth normal field, but also
preserves the underlying orientation discontinuities apelcts noises caused by highlight and
shadows. As we shall see, the availability of dense datatefédy copes with non-Lambertian
observations inherent in the dense set. Using the densgttataitial normal at a pixel is
obtained, which is used as the local evidence in a MRF netf@rkolving the problem. A
simple surface reconstruction algorithm is proposed teggr an acceptable surface from our
recovered normal maps. We shall investigate two importaRENhference algorithms:

Graph cuts (GC) In the first method, we translate the MRF model for dense phetoc
stereo into an energy function. Estimating the MRF-MAP 8oluis equivalent to minimizing
the corresponding energy function. The MAP estimation carefficiently performed by the
graph cut algorithm [20], where the data term is encodedgusia local evidence identical to
that used in our belief propagation algorithm. We show th@tsimoothness term can be encoded
into a discontinuity-preserving metric, thus making therenefficienta-expansion [6] rapidly
converge to an optimal solution w.r.t. the discrete labelcspwith atheoreticalguarantee, in-
stead of the slower swap move [6] in a pairwise MRF. Simildd&j, the smoothness constraint
is enforced while geometric discontinuities are preserdadcontrast to [19], however, while
the energy function we minimize is still regular, our noidyopometric data are treated asym-
metrically by resampling the dense and scattered data mtmbiased set.

Tensor belief propagation (TBP) Our second method uses a MRF network where hidden
nodes receive initial messages derived using local evetenthese nodes communicate among
each other by belief propagation to infer smooth structysesserve discontinuities and reject
noises. In this paper, we propose a new and very fast tersadbmessage passing scheme for
producing an approximate MAP solution of the Markov netwogthough it is an algorithm

that estimates the solution, it produces comparable eegulEC. Besides, it allows continuous
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estimation of normal directions, runs very fast and regusignificantly less memory compared

to traditional message passing used in belief propagation.

The preliminary versions of this paper have appeared ind88][46] where the two inference
algorithms were developed independently and were basedffenedt MRF models. In this
paper, we evaluate and compare the robustness and effioétiog two inference algorithms
based on the same MRF formulation and using the same input.higb precision normal
reconstruction, the graph cut algorithm converges witheotétical guarantee to an optimal
solution in a few iterations. We have improved the graph tgor&gthm in this paper, making
the system runs much faster than the algorithm presente4bin [The metric proof has also
been revised due to the use of a robust metric in encodingnioe@thness term. On the other
hand, because the traditional belief propagation is itdtde due to the prohibitive size of a
message encoded in the conventional way, we propose terssage passing to approximate
the MAP solution, by transforming the estimation from onediscrete to continuous. While
results comparable to those produced by graph cuts areneldtéboth running time and storage
requirement are significantly reduced. Comparing with [B&], this paper presents a complete
coverage of the two methods. More quantitative evaluatrerparformed using real as well as
synthetic data. Finally, we propose a novel aedl-time method on relighting based on our

photometric stereo reconstruction.

The organization of this paper is as follows: Section |l eas the related work. Section Il
describes the image capturing system for collecting ouseléiata. Section IV details the initial
normal estimation and the MRF approach for dense photoorstéieo. The two inference algo-
rithms are then described in detail. Section V describegtleegy minimization by graph cuts.
Section VI describes our tensor belief propagation. Weguresur algorithm on surface recon-
struction from normals in section VII. Based on the same M&#tlation and identical dense
input, the two normal reconstruction methods are evaluatedcompared in section VIIl. We
present results of normal and surface reconstruction dangnoisy data in section IX. Finally,
in section X, using the reconstructed surface, we proposavanse process to synthesize novel
images for the input scene under user-specified lightingctions. By making use of recent
hardware technology, the process is made to run in real tiFhe.process is alternatively and
better known as real-time relighting in computer graphiosir method provides many unique

advantages in comparison with previous relevant religihtirethod.
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Il. RELATED WORK

Woodham [44] first introduced photometric stereo for Lantibarsurfaces. In this work,
three images are used to solve the reflectance equatiorcforereng surface gradientsq and
albedop of a Lambertian surface:
lop +1lyq + 1,
VIt

wherep = %, q= g—; are the unknown surface gradierits,, /.| is the known unit light direc-

R(p,q) =p 1)

tion. Later, Belhumeur and Kriegman [5] showed that the §ghages of a convex Lambertian
object forms a convex polyhedron cone whose dimension ialéquhe number of distinct nor-
mals, and that this cone can be constructed from three pyagersen images. Many approaches
have been proposed to address the photometric stereo proble

Four images Coleman and Jain [7] used four photometric images to comfputealbedo
values at each pixel, using the four combinations involvimge of the given images. In the
presence of specular highlight, the computed albedos wilbe identical, which indicates that
some measurement must be excluded. In [35], four imagesalsreised. Barsky and Petrou [3]
showed that [7] is still problematic if shadows are presant generalized [7] to handle color
images. In these methods, little neighborhood informaaronsidered so they are sensitive to
noise caused by incorrect estimation in light directionsiolations to the Lambertian model.

Reference objects In [16], a reference object was used to perform photometeies, in
which isotropic materials were assumed. In this approdehptitgoing radiance functions for
all directions are tabulated to obtain an empirical reflecgamodel. Hertzmann and Seitz [13]
used a similar technique to compute surface orientatiodseftectance properties. The authors
made use of their proposed orientation consistency to lestaghe correspondence between an
unknown object and a known reference object. In many casegg\er, a reference object for
establishing correspondence is unavailable. A simplifedigéctance model will then be used.

Reflectance models By considering diffuse and non-Lambertian surfaces, Tagead
deFigueriredo [37] developed a theory onlobed reflective map to solve the problem. Kay
and Caelly [18] extended [37] and applied nonlinear regoest® a larger number of input im-
ages. Solomon and lkeuchi [35] extended [7] by separatiaghject into different areas. The
Torrance-Sparrow model was then used to compute the sudagbness. Nayar et al [28] used
a hybrid reflectance model (Torrance-Sparrow and Becknsmezichino), and recovered not
only the surface gradients but also parameters of the rafleetmodel. In these approaches, the

models used are usually somewhat complex, and a larger mwohparameters are estimated.
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Fig. 1. Two typical noisy photometric images f®nailcaptured by our simple system. (a) is significantly contam-
inated by shadows, and (b) is corrupted by highlight. (c) pidgl trajectory of the estimated light directions shows
that they are scattered and very noisy.

Basri and Jacobs [4] used low-order spherical harmoniceitode Lambertian objects. They
assumed isotropic and distant light sources. Lighting neayriknown or arbitrary. Shape recov-
ery is then performed in a low-dimensional space. Goldmaat |gt0] proposed a photometric
stereo method that recovers the shape (normals) and BRDs ars alternating optimization
scheme. Unlike their earlier work [13], a reference objsctat needed, which is solved as part
of the reconstruction process. The BRDF model used is thel Wiaxdel. Since they only used
a sparse set of samples, the light calibration should beraie;uand severe highlight and cast
shadows must be absent. They built an interactive religlaystem whereas we built a real-time
relighting system that supports very fast frame rate ancemersatile lighting effects (see the
supplementary video). Our relighting approach does natiregecovery of material properties

and any assumption on the reflectance model.

To our knowledge, there is no previous work using belief pgatgion or energy minimization
via graph cuts to address the problem of (dense) photonstétieo. The use of a dense set of
photometric stereo data-(100) has not been extensively explored, possibly due to thediffi
in producing hundreds of accurate light directions, while @pproach is robust against inaccu-
rate and scattered estimations in light directions samipjedur simple capturing system. An
earlier work [22] investigated two algorithms: the parbdad cascade photometric stereo for
surface reconstruction which use a larger number of imageglated work using one image,
that is, shape from shading, was reported in [17], where tbllem was solved via graph cuts,

by combining local estimation based on local intensitied global energy minimization.

Note that exact inference in the Markov network witlopsis intractable. Algorithms that
approximate the solution such as loopy belief propagatrdpearl’s algorithm [32] have been
employed. For energy minimization by graph cuts [20], theditions for an energy function

that can be minimized was described and a fast implement&icurrently available. The
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Fig. 2. (a) A typical scenario of data capturing. (b)—(c):olwews of the experimental set-up under different

(b) B2 o)

illumination. (d) The captured images correspond to a spadtpoint set on the light direction sphere.

converged solution given by graph cuts is optimal “in a greense” [20], that is, within a

known factor of the global optimal solution.

[1l. DATA CAPTURING

In this section, we first describe our very simple system féiciently capturing a dense
set of photometric images. The light directions and photoménages we capture are very
noisy (Fig. 1). Unlike certain approaches in photometreexd where high-precision capturing
systems were built, we propose to resample the dense andotisiervations to infer a uniform
set, from which robust normal plane fitting can be perfornsatijon IV) to estimaté/, at each
pixel s. The initial normals will be used to encode the matching émsbelief propagation, or
encoded into the robust data term in energy minimizationgigraph cuts.

Our system is inspired by [13] where a reference object oflkngeometry was used to find
out surface normals of the target object. They performediniag on bidirectional reflectance
distribution function (BRDF) response based on the orignmteconsistency cue, where the spec-
ular highlight implicitly gives the surfaceormal direction The reference object should be sim-
ilar to the target object in material. On the other hand, @praach explicitly uses the specular
highlight to estimate thight direction, which is used to obtain the initial surface normal at each

pixel. No reference object of similar material is used.

A. Light calibration

Our robust dense photometric stereo requires acceptaiiheagsd light directions but they
need not be very accurate. In fact, our proposed light ctiton method is very simple. Shown
in Fig. 2(a) is our experimental set-up, where two views efdbject and a mirror sphere under
different illuminations are depicted in Fig. 2(b)—(c).

A video camcorder is used to capture a sequence of imagesdmgicty the direction of the
light source which is a handheld spotlight. The auto-expm$unction of the video camcorder

is turned off when the video is captured. In our experimentstried to hold the spotlight at a
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Fig. 3. Icosahedron: (a) shows the original icosahedroh 2@ base faces. In (b) and (c), each face of (a) is
subdivided into 4 equilateral triangles recursively irataif 4 times and 5 times, respectively

constant distance from the object so as to maintain a canstatiance impinging on the object.
But it is difficult to achieve using a handheld spotlight, dahdrefore our images suffer various
degrees of attenuation in light intensity. To sample as ntl@gctions as possible that cover the
half space containing the object (Fig. 2(d)), it is inevieathat the shadows of the wires, the
camera tripod and the camera itself are cast onto the taboggtto Therefore, missing directions
are not uncommon in a typical set of sampled images. The @&pimages thus represent a
coarse and scattered collection of photometric responsagiue light directions sampled on a
unit hemisphere (Fig. 2(d)). This mirror sphere approact na adopted in [10] because sparse
samples were used in their photometric stereo method, vigétecalibration is more critical to
the reconstruction accuracy. In our method, we estimatkghedirection by locating the mirror
reflection, or the brightest point on the mirror sphere. Bareling for the maximum intensity,
we can readily localize the point of reflection. Since we krtbergeometry of the sphere and
the viewing direction which is assumed to be orthographjcShell’'s law, the light direction
is given byL = 2N (N - H) — H whereN is the known surface normal at the brightest pixel
(a,b), H=1[001]" andL is the estimated light directioriy can be determined given, b), the
image of the sphere centét,, ¢,), and the image of the sphere radiusUnder orthographic

projection, we can measufe,, ¢,) andr directly on any captured image.

In practice, the light source direction is located on theargemisphere containing the object
(Fig. 2(d)). So, to minimize the error caused by reflectionisdue to the light source (e.g. from
the table where the object and the sphere are placed), wethdivet the search space of the
maximum intensity by considering only the pixdls, y) satisfying(z — ¢,)* + (y — ¢,)* <
r? —r?cos(§) — e wheree > 0 is a small constant to offset the small error caused by the
measured, c, andc,. Using this condition, all light coming from the half spaetaining the

lower hemisphere of the reflective sphere will be autombyickscarded.
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B. Uniform resampling

There are two reasons to perform uniform resampling on tpeucad dense data. First, the
data volume and biases will be drastically reduced aftenmgding. Note that we capture a video
sequence at 30 frames/sec, and typically we spend five msititapture a data set. The second
reason is to partially leverage noise rejection to datamgdiag. Noise are typically caused by
inaccurate estimation of light directions and non-Lambarbbservations. As we shall see, our
resampling is implemented by image interpolation whictphéb smooth out outliers.

The data acquired by the above setup corresponds to a sdght@int set on the light direction
sphere where undesirable biases are present. To infer &lggttalirection samples uniformly
distributed on a unit sphere, we use a uniform unit icosairednd subdivide on each face four
times recursively [2] (Fig. 3). Suppose that the object ated at the center of a unit sphere
which contains the uniform unit icosahedron after subdvisideally, we want to illuminate the
object along the line joining the center and the verticebiefdubdivided icosahedron to achieve
uniform distribution. In practice, for each light direatid., at a given vertex of the subdivided
icosahedron, we seek a set of light directidnshat are closest té,, and obtain the imagg, at
L, by interpolating the corresponding imagest L; using/,(z,y) = >icy %L(x,y)
whereV is a set of indices to the captured light directions that éwsest toL,. Typically, the

input data size is reduced to several hundreds after unifesaampling.

IV. INITIAL NORMALS AND THE MRF MODEL FORDENSE PHOTOMETRIC STEREO

Given a dense set of images captured at a fixed viewpoint Wwéh torresponding distant
light directions, our goal is to find the optimal normal vecig, at each pixek.

Initial normal estimation: dense vs. sparse We describe how to estimate the initial,
at each pixels by making use of the intensity ratios derived from tlenseand noisy input.
As we shall demonstrate, given noisy input, the followingtimoe proves to be infeasible for
sparsenput but works for dense and noisy input where the inhemhimdancy is invaluable in
estimating/V,.

Supposehat the object is Lambertian. Then, the reflectance at eixeth pis described by
ps(Ns - Ly), wherep, is the surface albeddy, is the normal and., is the light direction at the
pixel s. Note thatV, andp, are the same for all corresponding pixels in the sampledésiag

We use theatio imageapproach to eliminatg, and obtain the initial estimat®,. Ratio
image was proposed in [34] for surface detail transfer. rAlieives for estimatingV, such as

the minimization of the residudlll, — p, (N, - L,)||* are also possible. However, becayséself
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Fig. 4. Initial normal estimation from sparse vs. dense @@tdeapot From left to right: Using 5 images only,
the 5 normal maps are respectively produced by using eadeiamthe denominator image. The rightmost normal

map is produced using a dense set of images. The normal migpiayekd asV - L whereL = (M%’ %, %)T is

the light direction.

is also unknown and the Lambertian model is often violatee gistimation of initial norma,

would have been more complex and less stable ¥ere also considered in the estimation.
Let £ be the total number of sampled images. To elimipatge dividek — 1 sampled images

by a chosen image we calenominator imagéo obtaink — 1 ratio images. Without loss of

generality let/,, be the denominator image. Each pixel in a ratio image is foere@xpressed by

I; N, - L;

- 2

An ideal denominator image is one that is minimally affeddgdshadows and highlight, which
is difficult to obtain. By adopting the simple Lambertian nregdwve derive the denominator
image to roughly eliminate the surface albedo by producatg images. The derivation is
straightforward and is described in the footriote

By using no less than three ratio images, we produce a lotalason of the normal at each
pixel: defineN, = [n, ny n.]"\Li = [lix liy li.)" and Ly, = [lxs ley -] For each pixek in

a ratio image, rearranging (2) gives the following

Ai,snx + Bi,sny + Ci,snz =0 (3)

1Our denominator image is derived by the following simple moett

1. We stack the sampled images to form a space-time volymey, t)}.

2. For each pixel locatiofiz, y), we sort all space-time pixelg:, y,¢) in non-descending intensities along time The
intensity rank of each pixel is thus known.

3. Since pixels with intensity adversely affected by shaglanwd specular highlight go to one of the two extremes of the
sorted list, for each locatiof, y), if the intensity rank a(z, y, ¢) is higher than the median and smaller than some upper
bound, it is highly probable that pixék, y) is free of shadows and highlight.

Thus, given a sampled imade, we count the number of pixels whose intensity rank satisfiaé > R; whereR; > 50th
percentile. LetK’ ,QL be the total number of pixels satisfying this conditiﬁh,L be the mean rank among the pixels that satisfy
this condition. The denominator image is defined to be thevgtiel) maximumKrg, and 2)7r, lower than some threshold
Rpy. Currently, we respectively sét;, and Ry to be the 70th and 90th percentiles in all our experiments.
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Fig. 5. The graph model of the Markov network. The observatiodesy, andy; use the initial normal estimates.

In graph cuts, they are encoded into the data term in the gna@rgmization function. In tensor belief propagation,
they are encoded as tensor messagesaandm,;. A second-order symmetric tensor can be interpreted as a 3D
ellipsoid. A stick tensor is an elongated ellipsoid, anddeethe shapes of., andm; shown above. Messages
are updated and propagated during the iterative procediere the shapes of the tensor messaggsandm;

change progressively.

where

A’i78 = Izlk’,z - Ikli,Qm B’i78 = Iilk’,y - [kli7ya O’i78 = Iilk’,z - Ikli7z

are constants. Givelh— 1 > 3 ratio images, we have — 1 such equations for each pixel. We
can solve forfn, n, n.]” by singular value decomposition (SVD) which explicitly erdes the
unity constraint]| N,|| = 1.

To demonstrate that the ratio image approach does not wosipérse input in the presence of
shadows, highlight, and inaccurate estimation in lighéction, we randomly pick five images
from one of our datasefféapoj and use each of them in turn as the denominator image to
estimateN, at each pixel. As shown in Fig. 4, all five normal maps produaredunsatisfactory
compared with the one produced by our dense input, becauseaye in the sparse subset is
a good denominator image. The dense input provides adedatteedundancy to allow us to
choose the best denominator image.

In practice, however, the best denominator image is notepetfecause the input can be
very noisy. MoreoverN, estimated at each pixel does not take any advantage of reetybind
information. As we shall show, smoothing technique canealdne because the underlying dis-
continuities will also be smoothed out. By using an explitgcontinuity-preserving function,
in this paper, we propose to perform MRF refinement to infertiecewise smooth normal field
while preserving discontinuities. In the following secti the estimated’, is used to encode
the data term for energy minimization using graph cuts (@ed¥) and the local evidence for
tensor belief propagation (section VI). Now, let us defireMRF model for dense photometric

stereo.
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Fig. 6. The robust function for encoding the discontinyptgserving function: plotting the Lorentzian function
log(1+3(£)?) vs. z with (&) o = 0.005, (b) o = 0.0005, (c) Our modified Lorentzian functidng(1+ 3 (‘”” )) with
o = 0.05. In all cases, the curves are bounded when +oco, which is more robust than the usual norm-squared

function (i.e. the unboundee?) in terms of encoding the error term.

The MRF model for dense photometric stereo  Shown in Fig. 5 is a Markov network which
is a graph with two types of nodeégé andY: A set of hidden variableX = {z,} and the set of
observed variables = {y;}. The posterior probability’(X |Y") is defined by:
P(X]Y) o st 2o, ys) [T I pa(ze, 220) (4)
5 teN(s)

whereyp,(z5, ys) denotes the local evidence, apd(z,, x;) denotes the compatibility function.
N(s) denotes the first-order neighborhood of nade

To derive the MRF formulation for dense photometric stere®setX = A whereN is the
set of normals visible to the camera (normal configuration)a = Z whereZ is the dense set

of input images. We obtain

P(N|I)mgexp< ¢s(N, Ny) )H 1 eXp( Qbst(NsaNt)) 5)

20% s teN(s) 203
whereN, is the normal at node, IV, is the normal at nodewhere(s, t) are neighboring nodes.

Theo’s are used to control the the extent of the corresponding&ans. We define
¢S(NS7NS): ||N3_N3H (6)

to measure the conformity, to the initial normal estimaté/, at locations.

We use a robust function, the Lorentzian function, to maedel

R¢(x,0) = log (1 + % (§>2> (7)

wherex = || N, — V|| is a discontinuity-preserving metric [20]. Fig. 6 shows sqpiots of the
Lorentzian function whose shape can be controlled by adgishes parameterg,; is defined

as

¢st(Nsa Nt) = log <1 + 2(
g

which penalizes the assignment of significantly differemtmal orientations.
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V. ENERGY MINIMIZATION USING GRAPH CUTS

The graph cut algorithm is a widely adopted MRF techniqueoimguter vision. Despite the
desirable properties and the availability of a fast and snmmpplementation with a theoretical
guarantee [20], there has been no previous work on the usapif guts to address the (dense)
photometric stereo problem.

In this section, we formulate the problem of dense photomstereo into one of graph cuts.
Let NV = {ay, a9, -, ap} be the pixelwise normal configuration of the scene, giventafe
photometric image% = {1, I»,-- -, I;} each has a total dD pixels. Recall from (4) that the
MRF model for photometric stereo for normal reconstructgon

PNT) oc [Tos(Ne, NOTT T ¢st(Nes Vo) 9)
s 5 teN(s)
If we take the logarithm of (9), we obtain

E(N) = Z _loggps(NSa Ns) + Z _log¢st(Ns>Nt)

s (s,t)

= Y D(N,,Ny) + > V(N,, Ny)
s (s:t)
- Edata (N> + Esmoothness (N> (10)

where the function® andV are energy functions to be minimized by graph cuisandV” are
respectively called the data term and the smoothness tegrajii cuts, which relate respectively
to the local evidence and compatibility function of the esponding MRF model.

In the realm of graph cuts, we seek an optimal normal conftgquray*. Let £ be a set of
labels corresponding to the set of all discrete normal tait@ns. The discrete labels correspond
to the vertices on a subdivided icosahedron which guaramiéerm distribution on a sphere [2].
To increase precision, we follow [2] to subdivide each fataricosahedron recursively in a
total of 5 times (Fig. 3), so thar| = 5057. From our experimental results, it gives seamlessly

smooth surface normals on a sphere.

A. Energy function

Our energy function for graph-cut minimization consistthaf data and the smoothness terms.
Data term Because our input consists of images and light directiohg oar data term should
measure the per-pixel difference between the measuredarestimated ratio images by using
(3). However, this will produce a large number of summationthe data term due to plane

fitting. As pixel intensity is significantly governed by thel’s normal, we can instead measure

12



the difference between the initial nornis] and the normal, at pixels estimated in the current
iteration during the graph-cut minimization (i.e., thereunt a-expansiorf20]). Let N,, be the

normal indexed by the label € £. We define our data term as the following:

Edata(N> :ZDs(as> :Z“Ns_jv\as . (11)

Smoothness term On the other hand, the smoothness term should measure tlothsrass
of the object surface while preserving the underlying disicwity. To define the discontinuity-
preserving smoothness term, we employrtimifiedLorentzian function as the robust function

(c.f. (7)):

Ry(r.0) = log(1 + 5 (1)) (12)

This function has a similar shape to the original LorentZamction (Fig. 6). The modified
Lorentzian function is necessary to make the energy funcggular so that it can be graph-

representable. The proof is given in the next section. Weadefur smoothness term as:

Esmoothness(N> = A Z ‘/s,t(a&at) (13)
teN(s)
N,. — N,
Y 1og<1+—|| - tH) (14)
tEN(s) 20

where\ = Z—g is a constant resulting from the logarithmic transformaiio (10), andN is the
first-order neighborhood af The setting of\ depends on the scene and how much discontinuity

to be preserved. Fdarapot A = 0.5 ando = 0.4.

B. Graph construction and proof of convergence

To perform multi-labeling minimization, the expansion readgorithm [20] is one suitable
choice. Here, we have a quick review on this algorithm:
a-expansion For each iteration, we simply select a normal direction llabe £, and then
find the best configuration within this-expansion move. If this configuration reduces the user-
defined energy, the process is repeated. Otherwise, if iham that decreases the energy, we
are done.

According to [20], the user-defined energy function has tedgilar and thus graph repre-
sentable so that it can be minimized via graph cuts (in a gtsanse). This is also true for

|£|-label configuration ifx-expansion is employed. More precisely, for ¢df-label case, the
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energy function has to be regular for eactisplacement. In this connection, we will prove that
our energy functior is regular in the following:
For any class? function of the form defined in [20]:
E(xy,...,x5) = ZEZ(QSZ) +ZEi’j(asi,x]~) (15)
i i<y
where{z;|i = 1,...,0} andz; € {0, 1} is a set of binary-valued variable&: is regular if and

only if
E(0,0)+ E¥(1,1) < E(0,1)+ E(1,0). (16)

From [20], it is known that any function of one variable is w&gy and hence the data term
E 44t is regular. Therefore, it remains to show that the smoothtemE ., 1155 Satisfies (16)
within a move. We prove the following claim dri which makesE regular. This claim also
allows for the more efficient-expansion which runs i®(|£|) time [20].
Claim: V. is a metric.

The proof is as follows. In order th&t is a metric, for any label,, as, a3 € L, the following

three conditions have to be satisfied:

V(al,ag) =0 & a1 =as
V(ay,as) = V(ag,a1) >0

Viay,a2) < Viay,as) + Vias,as)

Since the first two conditions are trivially true for ofik,,oimn.css, We shall focus on the third

condition here. Lek;; = IIN,, — J/V\aj||. For any adjacent pair of pixelsandt, we write:

Vii(ar, as) + Vii(as, az) — Vii(ar, az)
K K. K
= log(l#—i) —i—log(l—i-ﬁ) —log<1+£)

202 202 202
(1+ L)1+ L)
= log ( I % (17)

If the expression inside the logarithm of (17) is greatentbeequal tol, (17) is greater than or
equals to zero. Itis in fact true:
K13 K32 Kl2
1+ — ) (14+=—=)—(1+=—
( +2(72>< +2(72) ( +2(72)
1 Ki3K
- (Klg R 32) >0 (18)

202 o2
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Note thatN,, — N,,, N,, — N,, andN,, — N,, are three vectors projected onto the same
plane defined by the point¥, , N,, and N,,, which form a triangle on the plane. By the
triangle inequality,K15 + K33 — K5 must not be less than zero, and hence the third metric
condition holds.

SinceV; is a metric,V; .(av, &) = 0 and V4 (avs, ) < Vii(as, ) + Vi i, o), the smooth-
ness term¥;,,.mness 1S regular [20]. To minimize our energy function in eaehlisplacement,

we can construct a graph by using [20], followed by applyimgmax-flow algorithm [8].

VI. MAXIMUM A POSTERIORIESTIMATION BY TENSORBELIEF PROPAGATION

Although the graph-cut minimization described in the poergi section for dense photometric
stereo has a theoretical guarantee, in which the miniminetgg corresponds to the global
optimal solution “in a strong sense” [20], as we shall shothancomparison and result sections,
the algorithm takes considerable amount of time (in minutesun due to the large number of
a-expansions necessary for minimizing the energy function.

In this section, we study an alternative MRF inference algor to address the dense pho-
tometric stereo problem. In belief propagation, messagegpwpagated and combined in a
Markov network. There are two common estimators for belreppgation: MAP and MMSE
(minimum mean square error). In discrete labeling, the MAtheator assigns discrete labels
as messages, which are propagated and updated in eacioiiterBlhe max-product algorithm
is often used in combining the propagated messages. MM$Hatet weighs marginal prob-
abilities and produces an optimal solution at sub-pixetigien. MMSE uses sum-product to
compute the marginal probabilities. Comparison with MAR &MSE on geometric stereo
were made in [39].

In photometric stereo, the traditional belief propagatsinefficient if discrete labels are used
in encoding a message. Suppose we still subdivide an icdsainé produceé057 labels for
each message, gigabytes of memory is required for a typiy@(256 x 256). The memory
required by sum-product and max-product are similar.

Inspired by tensor voting [26], we propose to apfansor belief propagatigrwhich uses a
very compact representation for a message by encodingitimbmpacsymmetric tensoto
store the second-order moment collection of the estimatedal directions. Note that the light
source used in photometric stereo is located above thetplsf@¢he normals inferred should
have a consistent orientation toward (or away from) thetlgglurce and hence the orientation

is known in advance. Second-order moments are used in owagepassing to simplify the
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inference by making the tensor symmetric. We can simply fig inferred normal after the
estimation if needed.

In fact, tensor belief propagation is a special case of tevising where the spatial neighbor-
hood is restricted into the first-order neighbors (given ty image grid structure). Although
tensor belief propagation does not have a strong theokgticgaantee similar to graph-cut min-
imization, for all our experiments, we found that the normelps produced by tensor belief
propagation and graph cuts are comparable, while tensief bebpagation runs much faster (in
a few seconds) than graph-cut minimization.

Since 3D normals are inferred, the tensor we useds<a3 symmetric matrix. Hence, the
storage requirement for each message is reduced drasticallhundred bytes or less. Using
tensor as messages also changes our solution space frorhdiserete to continuous.

Given a Markov network wher& = {z,} is the set of hidden nodes ant = {y,} is the
set of observed nodes (Fig. 5), tet(z,) be the message received at nadérom nodey, and
mg (s, x;) be the message that nodesends to node,. Initially, each pixel has an estimate of
the normal directionV, (Section IV). We represent, () by the stick tensor oN,, i.e. N,N7.

The message passing algorithm is described below:

A. Algorithm

1. Initialize all messagesi (s, x;) as a3 x 3 identity matrix (i.e. a ball tensor without
preferred orientation is used to denote uniform distrimitiandm,(z,) = NSNST (i.e. a stick
tensor to indicate initial belief in the normal orientatifmn pixel s).

2. Update messages.;(z,, x;) iteratively fori = 1 : T"whereT is the number of iterations:

2.1 Find the current normal with the highest probability
bi,(xs) = m(zs) + Z st(xkaxS) (19)

2 EN(zs)

Ny = &b () (20)

S

whereeé; [bs(z,)] is the unit eigenvector associated with the largest eideavaf the tensor
bs(xs).
2.2 Compute new messages
mi (zg, 1) = 0t (NE, NY) (normalize[ms(xs) + Y my, (2, :173)]> (21)
T EN(z5 )\ 7t
where the normalization of a tensor scales all eigenvalodbat the largest one equals to 1.

Notice that the compatibility functiom,.(N¢, N}) controls the strength of the message passed
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to z;. When the angle betweeN! and N/ is small, ¢.;(N,, IV;) in (8) tends to 0 and hence
vs(Nt, N7) tends to 1 and vice versa. Therefore, discontinuity betweeandx, can be pre-
served via controlling the strength of the messages pabsitvgeen them. Furthermore, in the
presence of discontinuity, the behavior of the compatibilinctiony,;(N?, N/) can be adjusted
by theo in (8), whereo = 0.5.

3. Compute beliefs

bs(zs) = mg(zy) + Z mi, (T, ) (22)

z€N(zs)

N, = ¢ [bs(xs)] (23)

In steps 2.1 and 3 we perform eigen-decompositiorb,oto obtain the majority direction,
given byeé;, the eigenvector corresponding to the largest eigenvalués similar to tensor
voting [26] for inferring the most likely normal in surfaceaonstruction from a 3D point set.
Fig. 5 illustrates the Markov network (graph) with messagassing in a neighborhood. The
initial normal estimatesv,, N, are passed to the hidden nodes, which will be encoded respec-
tively into a stick tensor for representimg,(xs) andm,(x;) respectively. Messages are updated
and passed amongs accordingly.

The computational and storage complexities of our algorigheO(7D) andO(D) respec-
tively, whereD is the number of pixels andl is the number of iterations. For an image of size
512 x 512, it takes roughly 2 seconds only for each iteration on a BemV 3.2G PC with
512M memory.

It is worth noting that a method based on belief propagatias woposed in [33], which
enforces surface integrability for surface reconstrucfrom normals. A Markov graph model
was used where local evidence at each observation nodeasl@haby initial surface gradient
estimated by any photometric stereo or shape-from-shaalopgrithms. Message passing is
implemented by the sum-product algorithm which computesMiAP estimate of the unknown
surface gradient at each pixel. Note that both [33] and odhateuse a graph model. Our tensor
belief propagation directly estimates normals and explipreserves discontinuities via a robust
function, while [33] refines the initial noisy surface gradis by enforcing the integrability

(smoothness) constraint and does not use explicit disuaityipreserving function.

B. Analysis

In our tensor message passing scheme, the tensors intettaetach other when a new mes-

sage is generated. Let us consider the following scenangisag 2D tensor for illustration
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because the 3D case is analogous. After summing up the teressages and performing eigen-

decomposition, a 2D tensor has the form

A1 0 el
By - (24)
0 Ao e
where A, A\ (A1 > Ay > 0) are the eigenvalues arid, e, are the associated eigenvectors.
Graphically, a 2D tensor can be represented as an ellipse\wit and \,é; corresponding to
the oriented semimajor and semiminor axes respectively.

Note that a stick tensor is one witsy = 0, which is used to encode absolute orientation
certainty. A ball tensor is characterized by = )5, and is used to encode absolute orientation
uncertainty. Let us consider the following combinationsewliensor messages in the extreme
cases are added together:

1. Both messages are stick tensoidere are two scenarios: (a) When bétls in the two
tensors are identical, the resulting tensor will have theesaigen-vector but a largey, in-
dicating that we have a higher confidence &rbeing the most likely normal direction. (b)
Otherwise, the tensor becomes an ellipse, with the reguitimfter eigen-decomposition still
being the most likely direction, and with an uncertainty iredtion, encoded as the orthogonal
directione, with uncertainty),.

2. One message is a stick tensor, the other message is a batrtefisis case is similar to
scenario (b) of case (1).

3. Both messages are ball tensoiEhe resulting tensor is still a ball tensor because the two

tensors do not have any preferred direction.

VIl. SURFACE RECONSTRUCTION FROMNORMALS

The normals obtained after MRF refinement are used to red¢beeunderlying surface. In
this section, we propose a simple height generation algunwhich is empirically shown in the
result section to produce an adequate surface given theatoratovered by our method.

Suppose the height at locatierns h,. The normal at can be rewritten into:

1 T

Ny = ——==1[-ps, —¢s 1] (25)
yitpi+a
wherep, = %’;; = —1= andg; = %i; = —Z—Z. Many traditional approaches for surface recon-

struction from normals are based on integration, and tlegmability or the zero curl constraint

needs to be enforced. Very often, enforcing integrabiityanslated into minimizingg—’y’ — % IE
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at each pixel [9]. Assume that all partial derivatives $gtike integrability constraint, integra-
tion [9] can be applied to reconstruct the surface.

However, the normal maps obtained by using our method areyuatanteed (or needed)
to be integrable everywhere because fine details and discdigs are preserved in the map.
To reconstruct the surface, one may apply [33] to alter tlifase normals when necessary to
satisfy the constraint. Another way to reconstruct theamgis to apply the shape from shapelet
approach [21]. While a decent surface can be obtained by tirethods, the methods are
somewhat complicated. Here, we describe a simple methochvidian analog of [4] and [10]
to reconstruct a surface.

The idea of the method is here: the residual of the recortstiigurface at a pixel location
should be minimized when all integration paths are consilleGiven a first-order neighbor pair
s andt, the residual of the heiglit, with respect taq; is defined by the difference between the

estimatedh, and the height integrated starting fram

hy — hy + p,)?, if t = t1is the left neighbor

(
(hs — hy — py)?, if t = 2 is the right neighbor (26)
(hs — hs + q5)%, if t = t3is the up neighbor
(hs — hy — )2, if t = t4 is the bottom neighbor
The total residuaFE of the reconstructed surface is defined by:
E(h) = Z((hs — hyy — pt2)2 + (hs — huy — %4)2) (27)

S

Since each individual residual is a convex functiéhis also a convex function. Any optimiza-
tion method for convex optimization such as the gradienedemethod can be used to minimize
E to obtainh. In our implementation is minimized by setting its first derivative with respect
to h, equal to zero. Theh, is solved iteratively. In each iteration, for eaghwe estimate,

by solvingdE(h)/0hs = 0 until the algorithm converges. All the surfaces in this pagpe
produced by this simple method, which are comparable todkelts generated by [21] used
in [38], [46].

VIll. COMPARISON

This section compares tensor belief propagation (TBP) aadigcuts (GC) using synthetic
and real data where ground truths are available. Recalbtithtinference algorithms are based

on the identical MRF model.
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(@) (b) (€) (d) (e) (f)

Fig. 7. Three spheres(a)-(b) Two views of the input images. (c)—(e) Normals retaucted by graph-cut mini-

mization. (f) The ground truth. For ease of visualizing teeavered normals, in (c)—(f), we make the object Lam-

bertian by displayingV - L for each pixel, wheréV is the recovered normal observed at a pixel= [% % %]T
for (c), L = [—% - % %]T for (d) andL = [0 0 1]T for (e)—(f).

A. TBP vs. GC: synthetic data

We first use the synthetic examplaree spherewhere a total of 305 images are sampled. As
shown in Fig. 7, the reflectance captured by the images coathit of specular highlight and
shadows. The following is the evaluation procedure and dmeparison results are summarized
in Table I.

1. Obtain the ground truth normal map illuminated’at [0 0 1] (other L will render the
(N - L) image too dark at certain pixels. See Fig. 7).
2. For various amount of additive Gaussian noises to theastid light directions,
(a) Run tensor belief propagation to obtain the normal namihated at.
(b) Run energy minimization by graph cuts to obtain the ndmmep illuminated at’.
(c) In both cases, note the running time, the number of itaraf and compute theé\(- L)

image as defined in the caption of Fig. 7.

According to Table I, the results and errors produced bylyaps and tensor belief propaga-
tion are comparable while the running time of the graph cugthiod is much longer. Note that
both approaches can tolerate significant estimation emrbglting direction (up to a standard
deviation (SD) of 15 degrees). In practice, such a largenedibn error seldom occurs. Note
that the smallest mean error that we can produce is aboutréetedrhis is because some of the
surface patches are affected by shadow and specular Hgfdignost of the time (e.g., the sur-
face patches along the silhouette of the largest sphereseMmarmals are nearly perpendicular
to the focal plane, are shadowed nearly half of the time).eltbeless, the estimation accuracy

in both algorithms are still very high.
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Standard deviation (SD) 0° 15° 30° 45°

TBP

mean error (in deg) 4.0417 4.1008 21.9630 32.187
running time 23.49s 20.89s 33.89s 11.78s
no of iterations 105 89 141 54

GC

mean error(in deg) 4.041 4.0905 22.0260 32.1950
running time 9Im56s 9Im52s 10m02s 9m58s
no of iterations 2 2 2 2

TABLE |
COMPARISON OFTBP AND GC ON Three spheresTHE EFFECT OF PERTURBATION OF LIGHT DIRECTIONS ON
THE MEAN ERRORS OF THE RECOVERED NORMAL AND THE MAXIMUM PERTBBATION ANGLES ARE SHOWN
THE GROUND TRUTH IS SHOWN INFIG. 7(F). THE EXPERIMENTS WERE RUN ON ACPU SERVER WITH4

AMD OPTERONTM) PROCESSOR844 CPUAT 1.8GHz AND 16G DDR-333 RAM.

B. The effect of MRF refinement

In the presence of complex geometry, shadows, highlighb#melr non-Lambertian phenom-
ena, MRF refinement is crucial to produce good normal resiitg. 8 compares two normal
maps and the resulting surfaces fi@apot one is produced by the ratio image approach de-
scribed in section 1V, the other is produced, in additionngsour discontinuity-preserving
MRF refinement (GC is used here). Note that the MRF refinenenirates the errors caused
by complex albedos while preserving all subtle geometrjustiog the air hole and the ripple
patterns of the teapot. Note that te: L. image depicted here is for display purpose, and exist-
ing 2D and 3D anisotropic diffusion or discontinuity-pregseg methods cannot be applied to

our normal map, where each 2D pixel location refers to a 3Dnahr
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Fig. 8. The effect of MRF refinement fdieapot (a) The noisyN - L image is produced by the least-square
solution of the system of equations given by the ratio imgg@@ach described in section IV (i.e., without MRF
refinement). The other image is produced by our MRF algorii®@). (b) Comparison of the generated surfaces
from normals, without and with MRF refinement respectively.

Data set Image size  Number ofimages # TBP iterations TBRmgriime  # GC iterations ~ GC running time
Snail 134 x 240 2074 98 25.02s 2 560s
Cleopatra 159 x 240 2517 65 82.30s 2 695s
Teapot 188 x 202 3165 304 175.47s 4 912s
Rope 171 x 144 2812 166 68.80s 3 614s
Transparency 212 x 209 3153 192 174.36s 3 820s
Face 223 x 235 1388 89 72.79s 4 986s
TABLE I

SUMMARY OF RUNNING TIMES. THE EXPERIMENTS WERE RUN ON ACPU SERVER WITH4 OPTERONTM)

PROCESSORS844 CPUAT 1.8GHz AND 16G DDR-333 RAM.

IX. RESULTS

As mentioned in the previous section, both inference allgars produce comparable results
while belief propagation using tensor message passingnuieh faster and converges to results
comparable to those in GC. In all cases, very faithful nosneain be recovered. We also show
different views of the surfaces reconstructed using thewvex@d normals as input to our surface
reconstruction algorithm presented in section VII. We heested very complex objects and
scenes containing a lot of highlight and shadows, and evgEtishwith transparency to demon-
strate the robustness of our method. For visualizationntivenal N recovered at each pixel
is displayed using/N - L) whereL is the direction of a synthetic light, which allows for easy
detection by the human eye if any slight estimation errorresent. Table Il summarizes the
running times. Please also review our supplementary videour results.

Comparison with ground truth: real data In Fig. 9, an exampl&eal Spherés shown. We
chose a spherical object because we can estimate the grogimcidormal map of the object by
fitting a known sphere. Without considering the distortiesulting by perspective projection

of the camera and inaccurate estimations of light direstidine absolute mean angular error
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Fig. 9. Results ofReal SphereFrom left to right: Three typical captured imagesR¥éal SphereThe recovered

normal N displayed asV - L with L = [\/Lg \/Lg \%]T. The reconstructed surface rendered at a novel viewpoint.

The reconstructed surface from ground truth normals.

@) (b) ()

Fig. 10. Results osnail Three typical images we captured were shown in Fig. 1. (&r€bonstructed normals

N are shown a®V - L whereL = [% — % %]T. (b) The surface reconstructed from the recovered norr(@ls.

The result of displacement mapping on a cylinder, usingelecemstructed surface.

produced in this case i9.36 degrees. Note that such a large absolute error for real sakeei

to the presence of non-negligible ambient light and violabf Lambertian assumption. Ideally,
because the spherical object is opaque, half of the sphebgct in the input images shown in
Fig. 9 should be totally invisible. But the strong ambieghli makes it visible which offsets the
normal estimation. Because of this, the estimated nornmalst¢éo point upward resulting in a
large mean error. Despite that, our method preserves thalbs&ucture very well. The result
looks visually good, and is indeed quantitatively faithtmithe original surface if measured on
an alternative metric: we defing. to measure the structural difference between the estimatio

and the ground truth:
1

E, =
M,

D Nbatar1 — Oarr?al (28)

a=(s,t)

whereM.. is the total number of pixel pair8, is the angle between the neighboring normals at
s andt in the estimated normal map ang is the angle between the neighboring normals at
andt in the ground truth normal map. (§,t) is a left-and-right neighbor pait, + 1 = (¢, u)
whereu is the right neighbor of. The notation is applied similarly to up-and-down neighibgr

pairs. Thus Egn. 28 measures the mean of the angular rat&atdite in local neighborhood,
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(d) (e) ()

Fig. 11. Results ofleopatra (a)—(b) Two typical images we captured. (c) The recongddinormals visualized

asN - L whereL = [ % \/% %]T. (d) The reconstructed surface visualized at a novel viéntp(e) The zoom-in

view of the textured surface. (f) The result of displacenmapping on a synthetic cylinder, using the reconstructed

surface.

Fig. 12. Top: three typical captured imagesTefipotwhere complex geometry, texture and severe shadows are
present, and the recovered normals each of them is displayed &¢ - L with L = [—% \/ig %]T. Bottom:
The reconstructed surface rendered at a novel viewpoiatzdlom-in view of the reconstructed surface, and the

zoome-in view of the actual object at the same viewpoint.
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Fig. 13. Top: Three typical captured imagesfRufpewhere complex geometry, mesostructures, textures andsseve
shadows are present. Bottom, from left to right: the recederormalsV, each of them is displayed d¢ - L

with L = [% % %]T. The reconstructed surface rendered at a novel viewpaidtilze zoom-in view of the

reconstructed surface.

Fig. 14. Top: three typical images fadransparencywhere many assumptions in photometric stereo are vialated

shadows, highlight, transparency, spatially-varyingdlis, and inter-reflections due to the complex geometry. Bot
H . H _r.1 1 11T

tom, from left to right: The recovered normdisare very reasonable, displayedds L whereL = [7§ e 75]

the reconstructed surface rendered at a novel viewpoidttrenzoom-in view of the textured surface.
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Fig. 15. Top: three typical captured imagesFafce where complex geometry, texture and severe shadows are

present, and the recovered normalseach of them is displayed &6 - L with L = [ML§ — % %]T. Bottom:

Reconstructed surface rendered at a novel viewpoint, aadiew of the actual face captured at similar viewpoint.

and hence the neighborhood structure of the normal map. Welfthat, although the absolute
mean error is largel, tends to zeroq55 x 107%), indicating that our method preserves the
neighborhood structure very well and the mean error is deéfupeto an known angular scale
factor. By brute-force searching, we found the optimalestiat gives the minimum mean error

of 3.87 degrees, instead of the absolute mean errd®df6 degrees.

Complex patterns with discontinuities In Fig. 10, note the high level of details achieved
in our reconstruction, where the cloud, snail and mushroath @her complex patterns are
faithfully preserved in the normal reconstruction despiitat cast shadows and highlight are
ubiquitous. The smooth surface and the underlying surfaeatation discontinuities are faith-

fully restored. We also show the result of displacemenutexinapping on a synthetic cylinder
by using our reconstructed surface and normals for thiscobfgg. 11 shows another result in

this category.

Objects with complex geometry and albedos We show the reconstruction results for two
complex objecteapotandRopein Figs 12 and 13. The geometry and albedos ofTisapot

are very complex. Our method can faithfully reconstructrtbemal directions and shape of the
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teapot including the small air hole on the lid, while rejagtall noises caused by the complex
patterns, textures and colors of the teapot. AlthoughRbpehas spatially-varying surface
mesostructures, the surface and normals are faithfullynstcucted.
Complex objects with transparency Finally, the example in Fig. 14 tests our system to the
limit. The toy is contained inside an open paper box, whicktsa lot of shadows when the
object is illuminated on the three sides of the box. The towiapped inside a transparent
plastic container. So when it is illuminated at other di@ts$, a lot of highlight is produced.
Surface orientation discontinuities are ubiquitous indbgect. It is very tedious to choose the
right frames from more than 3000 frames we captured to perfgparse photometric stereo
and unbiased statistics is not guaranteed. On the other bandimple system which utilizes
dense but noisy measurement can effectively deal with thes#ems. The surface normals we
recovered are very reasonable under this complex situation

Fig. 15 shows another complex example dfaxewhere complex geometry, fine structures
(hairs and pimples on the face) and transparency (eye gleemsepresent. Observe that the eyes
below the glasses are successfully reconstructed. Therdisaity associated with the frames
of the glasses is still maintained. The pimple on the sulgjéate close to his eye glasses has

been preserved in the surface reconstruction.

X. THE INVERSE PROBLEM: APPLICATION IN REAL-TIME RELIGHTING

Using the reconstructed surface from dense photometriesteve propose an inverse process
to synthesize novel images of the same scene under useéfiegphéight source and direction.
This inverse process can be made to run in real time by empgjaytirrent hardware technology,
and is better known as real-time relighting in computer preg

The ability in controlling illumination offers the user arperience of 3D realism. Recent
work [41] allows the captured video (dynamic sense) be caitgd with an new environ-
ment seamlessly. Environment lighting is considered anging lighting conditions is allowed.
However, their method required an expensive and specialjgded acquisition system. And,
real-time relighting may not be possible. Using our very@erset-up and photometric stereo
method, we address the inverse problem of real-time remglég using compressed data.

Image-based relighting [43], [30] is a method to achievé-tieze illumination computation
of arbitrarily complex scenes. It shifts the data acquasififor real scene) or the time-consuming
illumination computation (for synthetic scenes) to a pogessing stage and stores the results

in a compact form. During the run-time, illumination effeetre achieved by real-time decom-
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pression and composition. However, if per-pixel depth iimfation is not available, photoreal-
istic relighting with interesting lighting effects suchilamination due to spotlight, point light
source, or slide projection cannot be correctly achiev&il [®n the other hand, the necessary
data for relighting basically consists of a dense imageagtiuced under a moving distant light
source, which is exactly what our dense photometric steged for normal reconstruction. The
reconstructed surface is exactly what relighting need fodpcing versatile lighting effects.

The early work in image-based relighting has much restrictin the novel lighting config-
uration [11], [30]. The first representatiotine apparent BRDFthat supports arbitrarily novel
lighting configuration is proposed by Wong et al. [43]. Theresentation is further generalized
to plenoptic illumination functiorj42]. Per-pixel spherical harmonics are used as a compact
solution for encoding the enormous relighting data in theirk. Polynomial function [25],
wavelet [29], spherical radial basis function [23] wereetgbroposed by other researchers as
the compact solutions. Unlike the rendering goal in compgitaphics, researchers in computer
vision are more interested in recognition under varioustiigy conditions. Principal component
analysis is frequently used to extract a set of basis images dlense input images for recog-
nition purposes [5], [47], [27], [12]. These methods can Baped for rendering purposes as
demonstrated by the recent work [31], [40], [14].

In this paper, we propose a hybrid, image-and-geometrgebagproach which makes use of
the dense input (images) and the surface/depth map regotestrfrom the recovered normals
(geometry) to perform real-time relighting for achievinguwally plausible results. Without the
recovered depth map from our dense photometric stereo, mverdg perform restrictive relight-
ing with distant light sources. This hybrid approach notyqmovides a unified way to simulate
distant and point light sources, but also achieves veryffaste rate by employing the state-of-
the-art graphics processing unit (GPU). In order to copé wie limited memory resource on
GPU, we adopt the PCA-based representation [14] as a corsglation for rendering.

In the following we start by briefly reviewing the plenoptlituimination function, which is
sampled and obtained by processing the raw dense input svagetured by the DV for the
purpose of real-time relighting. Note that the dense inmages are used ftwoththe recovery
of depth map (using dense photometric stereo) and the idata encoding (using PCA-
based approach). As the dense photometric stereo has beseam the previous sections, we
shall focus on the PCA-based encoding of radiance data ifotlosving subsections. During
the rendering, both the recovered surface and PCA-enceditahce data are loaded into GPU

memory. A unified GPU approach for real-time relighting thapports both distant light source,
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block-wise PCA
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image-wise PCA

Fig. 16. A divide-and-conquer approach is used to make theatation tractable and facilitate parallelism.

point light source, and even the slide projection, is dégch Finally, we present our relighting

results using a wide range of synthetic lighting set-up.

A. The Plenoptic lllumination Function

Image-based relighting is grounded on gienoptic illumination functiopwhich is extended

from the plenoptic function [1] to include the illuminati@omponent [42]:
I =Pi(ly, 1y, 1, v, 0y, 05, 2,9, 2, T, N), (29)

The function describes the radianteeceived along any viewing directidn,,, v,, v,) ob-
served at any viewpoirtr, y, z) in space, at any timeand over any range of wavelength
L = (l,,1,,1,) specifies the direction of a distant light source illumingtihe scene, ands the
time parameter. This function encodes how the environnookd like when the viewpoint is
positioned atx, y, z) under illuminationZ. When the viewpoint and time parameters are fixed,
the discrete version of the plenoptic illumination funatieeduces to the dense input for our
dense photometric stereo. To relight an image, we applyath@nfing at all pixels on the three

color channels respectively:
Pr(le, ly, L) Le(2, y, 2, las 1y, 1)), (30)

wherePj (1, .) is the result of interpolating the dense samples given tkgetklight vector
(I, 1,,1.) (other parameters iR; are dropped for simplicity)L., is the radiance alongd,, l,. ()

due to the light source, and, y, z) is the position where radiance is reflected. This is a local
illumination model with three parameters: the directidme tolor, and the number of light

sources.

B. Unified GPU approach for real-time relighting

The major issue in image-based relighting also present irhghorid approach is the enor-

mous storage requirement. Note that traditional image cesgon methods such as JPEG is
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Fig. 17. Our unified approach for (a) distant-source and @tpsource relighting, which are translated into per-
pixel table-lookup and multiplication, highly suitablerfieardware implementation. (a) To reconstruct (relight) an
image block under directional illumination, each data weétow) of M is a linear combination of rows (eigenim-
ages) inB. (b) Under the illumination of a point light source for whispotlight and slide projector are specific
cases, relighting coefficients are sampled from multiplesrbecause the light directidnat each pixel is different.

L is obtained from the depth map inferred from the normalsmstacted using our robust photometric stereo.

not applicable due to their lack of random-accessibilityotder to achieve real-time and com-
plex lighting effects, the relighting engine should be ddpaf randomly accessing pixel values
scattered all over the compressed data. In this sectionrstedview our illumination-adjustable
representation [14] that facilitates the implementatiarGPU for encoding a plenoptic illumi-
nation function [42] in order to achieve photorealistidgbting at high frame rate. Anified
GPU computation framework is then proposed for both distaoint (or spotlight) and slide
projector sources, which is made possible by our dense ptadtic stereo technique.
Principal component analysis (PCA) First, we preprocess the input data in order to maxi-
mize the correlation among neighboring data. Recall thaimuut is a set of images taken at
the same viewpoint, but illuminated by a distant light seuatong different directions. Each
captured image corresponds to a point on the light diretpirere. After resampling, a total
of k images is obtained. We observe that the luminance of tt@responding pixel values are
highly correlated, due to the smooth change in radiancectetldrom the same surface element
visible at a pixel. Therefore, principal component anaysan be applied to reduce the data
dimensionality. First, each 2D image is linearized to an tiayaof pixel values, which we call
data vectors. Then, all data vectors are stacked to formsandatrixM. The size of this matrix
is prohibitively large. For example, for a greyscale ima§2%6 x 256 sampled undeék light-
ing conditions, the data matrix is of sizexk65535. It is not feasible to compute the principal
components from this huge matrix.

A divide-and-conquer approach is therefore adopted toigigedthe images into blocks. Mul-
tiple blockwise PCAs are applied on the corresponding [dodk each image is subdivided

into w blocks, we performuv blockwise PCAs (see Fig. 16). With this block-based apgrpac
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Fig. 18. (a) Point-Source relighting (b) slide projectouste. L is different for each pixel under point-source

illumination

Fig. 19. Relighting results foFfeapotandFaceusing a synthetic distant light source to simulate the ddtueni-
nant used in data capturing. (a) and (c) are real, (b) andrédpar synthetic relighting results. They are visually

indistinguishable.

the computation becomes tractable and the memory requiteism@lso reduced. Moreover,
the computation can be parallelized easily. The block-W€&A also helps in capturing high-
frequency features, like highlight and shadows, with fewember of principal components.
Interestingly, while shadows and highlight are treated @ises in photometric stereo recon-
struction, they are important cue for photorealism durigigghting. In our relighting system,

we choose a block size of 16 16.

By applying PCA to the data matrix, M can be well approximated hy1 basis images
and their corresponding coefficients, wheveé < k. The data volume is drastically reduced by
keeping onlyM eigenimages and the relighting coefficients. NMvcan be expressed by the
product of two matriced andB, where the dimension & is k£ x M andB is M x ¢, whereg
is the block size.

Distant-source Relighting Every row ofM (image block) is a linear combination of all the
rows in B. The corresponding weights are kept in a rowAin(see Fig. 17(a)). We call the
rows inB the basis images @igenimageand the weights irA therelighting coefficientsThe

distant-source relighting can be expressed compactly by
I(L) =) ¢;B; (31)
j

where! is the image block relit under distant illuminatidn B; is the j-th eigenimage, and,
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Fig. 20. Relighting results fdCar, Snail andCleopatrausing a synthetic point and slide projection sources.

is the j-th relighting coefficient in one row oA, which is indexed byl. In case the desired
L is not sampled, interpolation using the closest neighbdtde performed to reconstruct the
desired/. Given a distant source with directidny each pixel is relit with the same light vector
L. Hence, the relighting coefficients are the same for all pixels in an image block. In other
words, distant-source relighting is actually the lineanbmation of eigenimage blocks; with
c; as weights. Such linear combination can be performed irti@a& on modern GPU by storing
eigenimages and relighting coefficients as textures.
Point-Source Relighting Despite the use of a directional illuminant (simulated byisiasht
spotlight) during the capturing phase, the captured datsbeaemployed to simulate the illu-
mination due to a point source, spotlight and slide projesturce. Unlike the distant-source
relighting, the light directior. observed at each pixel is different (as explained in Fig. I8)
obtainL = S — S, at a surface poin$,, whereS is the given position of the point light source.
S, can be derived from the reconstructed surface or the depphofidne scene. Thus, relight-
ing using a point source is now readily achieved, which iotlise impossible because the
surface geometry is either unavailable or difficult to obtai complex situation using standard
techniques.

Now, becausé. is different for each pixel, the relighting coefficient faah pixel is therefore
also different. To relight an image block, relighting coaffnts are sampled froifferentrows

of A, again indexed by different for each pixel inB;:
I(L) =3 A;(L)B; (32)
j
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where eachd; (L) is a 2D map of relighting coefficients, whose dimension isshme as that
of an eigenimage block,;. L is used to indicate the set of light direction vectors at iiéls in
1. In other words, the point-source relighting is actuallyieel-wiselinear combination of two
imagesA; (L) and B;. (32) represents the per-pixel table-lookup and multgtian to relight
an image under point source illumination, as illustratedrig. 17(b). Again such per-pixel

operations can be efficiently implemented on modern GPU.

Results Our GPU relighting was implemented and run on a 3.2GHz PC Bid&M memory,
and GeForce FX5900 graphics board with 256MB video memadgy. 19 shows the results for
relighting Teapotand Faceusing a synthetic distant light source which is made to sateuthe
actual handheld illuminant used in data capturing to testtrrectness of our implementation
of the distant-source relighting. Fig. 20 show the resuwltgélightingCar, Snail andCleopatra
using a synthetic point and a slide projector source res@dgtwhere we can achieve a very
high frame rate of 75 for point-source relighting, and 37 $bde-projector-source relighting,
which are both suitable for time-critical applicationsdikomputer games. Note the relighting
results of the slide projector source that uses a circubgr sign, whose projection on the object
changes according to the surface geometry of the objectchniki derived from the surface

reconstructed from our recovered normal map. Please eefarrtsupplementary video.

XIl. CONCLUSION

In this paper we formulate the problem of dense photometeies using the MRF frame-
work. Using the identical MRF model, we propose and compareinference algorithms for
estimating the MAP solution: graph cuts and tensor belieppgation. For high-precision
message passing in our dense photometric stereo probksiitidnal belief propagation is in-
tractable if the set of discrete labels is large, while tragpbrcut algorithm converges in very few
iterations. Tensor message passing for belief propageiproposed which drastically reduces
the running time and storage requirement, and it runs falséar graph cuts with comparable
results. Faithful per-pixel normal maps are inferred byhtadgorithms. Finally, we exploit the
inferred normals and the reconstructed surface to perfeafhitime relighting where distant,
point, spotlight and slide projector light sources can biéoumly handled and very fast frame
rate can be achieved. Our future work consists of more ilgaggdn on the surface reconstruc-

tion algorithm and analysis of the efficacy of the availaldagk information.
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