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Noise-Resistant Fitting for Spherical Harmonics
Ping-Man Lam, Chi-Sing Leung, and Tien-Tsin Wong

Abstract— Spherical harmonic (SH) basis functions have
been widely used for representing spherical functions
in modeling various illumination properties. They can
compactly represent low-frequency spherical functions.
However, when the unconstrained least square method is
used for estimating the SH coefficients of a hemispherical
function, the magnitude of these SH coefficients could
be very large. Hence, the rendering result is very sen-
sitive to quantization noise (introduced by modern texture
compression like S3TC, IEEE half float data type on
GPU, or other lossy compression methods) in these SH
coefficients. Our experiments show that as the precision of
SH coefficients is reduced, the rendered images may exhibit
annoying visual artifacts. To reduce the noise sensitivity
of the SH coefficients, this paper first discusses how the
magnitude of SH coefficients affects the rendering result
when there is quantization noise. Then, two fast fitting
methods for estimating the noise-resistant SH coefficients
are proposed. They can effectively control the magnitude
of the estimated SH coefficients, and hence suppress the
rendering artifacts. Both statistical and visual results
confirm our theory.

Index Terms: Spherical harmonics, BRDF, image-based
relighting, pre-computed radiance transfer, constrained
least square, texture compression, noise-resistant fitting.

I. INTRODUCTION

Spherical harmonics (SH) [1], [2] [3] are a set of
orthonormal basis functions defined over a unit sphere.
They have been widely used in representing various
spherical illumination properties including bidirectional
reflectance distribution function (BRDF) [4], [5], [6],
[7], apparent BRDF (ABRDF) [8], [9], distant environ-
ment [4], and pre-computed radiance transfer (PRT) [10],
[11] [12]. In these applications, we may have to store
many SH coefficients.

Further compression on these SH coefficients must be
considered in practical applications due to the enormous
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data volume [11] [13] [14]. These compression methods
(e.g. texture compression like S3TC and IEEE half float
data type supported by GPU) are usually lossy and
introduce noise to the SH coefficients. If care is not taken
when estimating the SH coefficients, a small percentage
error introduced by these compression processes may
induce serious artifacts to the ultimate rendering (Fig. 1).
With the increasing interest in the SH basis for practical
applications1, it is crucial to study the estimation meth-
ods of the noise-resistant SH coefficients.

As mentioned in [10] [11] [12], the reflectance prop-
erties in many graphics applications are usually defined
or collected over the upper hemisphere only. In other
words, they are hemispherical functions. To approximate
a hemispherical function with the (full-sphere) SH basis
functions, the lower hemisphere can be firstly filled
with zeros [10] or mirrored values [16], and then the
conventional SH projection (integration over the whole
sphere) can be applied to estimate the SH coefficients.
However, the approximation error is usually very large
as pointed out in [11][12].

Instead of using the full-sphere SH basis to approx-
imate a hemispherical function, there are some works
to search for other orthonormal bases defined over a
hemisphere. In [17], Gautron et al. proposed a novel
hemispherical orthonormal basis based on shifted poly-
nomials. In [18], the Gram-Schmidt procedure is applied
to the SH basis on the upper hemisphere to create
a new set of orthonormal basis functions. The basis
is designed to construct the principal components for
a convex Lambertian object under a varying distant
illumination. In [19], an orthonormal basis is used to
analyze the COBE DMR mission data in astronomy. This
orthonormal construction can be applied to handle data
scattered over part of a sphere. However, it would be
more desirable to maintain the computation in the SH
basis due to the wide availability of existing SH-based
literatures and tools.

In [11], Sloan et al. proposed to approximate the
hemispherical function by the unconstrained least square
(ULS) fitting with the SH basis but values on the
lower hemisphere are ignored. Mathematically, this ap-

1For example, the SH-based PRT routines are available in the
DirectX development toolkit [15].
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(a) Unconstrained SH
32-bit floating point

(b) Unconstrained SH
4 bits per coeff.

(c) Noise-resistant SH
4 bits per coeff.

Fig. 1. Visual artifacts introduced by further compression on SH coefficients. SH coefficients in (a) & (b) are obtained by unconstrained
least square method while SH coefficients in (c) are obtained by the proposed noise-resistant method. (a) Results rendered from the original
32-bit floating point SH coefficients. (b) Results after compressing these SH coefficients to 4 bits per coefficient with wavelet-based coding.
(c) The same wavelet-based coding is applied to the noise-resistant SH coefficients.

proach defines the hemispherical SH basis with upper
hemisphere having the same shape as the SH basis
and the lower hemisphere being zeroed. Although this
hemispherical SH basis is no longer orthonormal, it does
not harm the efficiency of computing illumination by
performing dot product in the SH domain. This is simply
resolved by pre-multiplying an autocorrelation matrix
[11].

Unfortunately, the magnitude of SH coefficients es-
timated from hemispherical samples, using the conven-
tional ULS, is usually very large. The implication of
these large-magnitude coefficients is that the rendering is
very noise sensitive. If no further compression is applied
to the SH coefficients, the rendering (reconstruction)
can be achieved perfectly. However, further compression
is unavoidable due to the enormous size. Since most
effective compression methods, such as transform cod-
ing, vector quantization, and principal component anal-
ysis (PCA) [20], are lossy, they unavoidably introduce
noise to the SH coefficients and hence to the rendering
results. In this paper, we prove that if the magnitude
of SH coefficients is large, a small percentage error in
SH coefficients will induce annoying and unexpected
visual artifacts to the rendered images. Fig. 1 shows
the rendering results from a SH-projected test scene.
In this example, the first 49 SH coefficients are used
for representing the reflection at each vertex. The SH
coefficients in Fig. 1(a) and (b) are estimated by ULS.
A pleasant result is obtained (Fig. 1(a)) if these SH
coefficients are not compressed and stored as 32-bit
floating point per coefficient. When they are compressed
to 4 bits per coefficient by wavelet-based coding [21]
[22], serious visual artifact is apparent (Fig. 1(b)).

To our knowledge, such a relationship between the
noise sensitivity and the magnitude of the SH coeffi-

cients has not been investigated before. Our analysis
suggests that the rendering error is proportional to the
magnitude of the SH coefficients. Using the conventional
ULS, the magnitude of the SH coefficients could be
very large. We shall explain the underlying reason. To
control the magnitude, we first define a constraint on
the magnitude of the SH coefficients. We then propose
two fast constrained least square methods for estimating
the noise-resistant SH coefficients and verify them in
various graphics applications. Experiments support our
theoretical finding (Fig. 1(c)).

The rest of the paper is organized as follows. Section II
reviews the spherical harmonics and its graphics appli-
cations. Section III describes the configuration of exper-
iments used throughout the paper. Section IV analyzes
the effect of quantization noise in SH coefficients on the
rendering. Section V proposes two noise-resistant fitting
methods. Statistical and visual results are presented in
Section VI to evaluate our methods. Finally, conclusions
are drawn and future directions are discussed in Sec-
tion VII.

II. SPHERICAL HARMONICS IN GRAPHICS

A. Mathematics

Spherical harmonics [2] are a set of orthonormal basis
functions defined over a unit sphere Ω. A spherical func-
tion f(�s) can be approximated by linearly combining a
finite number of SH basis functions, given by

f(�s) ≈
n∑

i=1

ci yi(�s) , (1)

where �s is a unit vector in 3D, yi(�s)’s are the SH
basis functions, ci’s are the SH coefficients and n is the
number of SH basis functions used. The SH coefficients
{c1, . . . , cn} form a SH vector to be stored.
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B. Spherical Harmonics in Rendering

The SH expansion is commonly used for representing
BRDF, ABRDF, PRT and other spherical reflectance
properties due to its compactness [4] [5] [8] [23] [9]
[13] [7] [10] [11] [12] [6]. With the SH representation,
we can render a scene/object under complex lighting
configurations directly from the SH coefficients.

We denote Lp,out(�v) as the reflected radiance from a
non-emissive surface element p, where �v is the viewing
direction. In this paper, we use the local coordinate
frame [7] [10] [11] [12] to describe the lighting property.
That means the surface normal of a surface element
is equal to (np,x, np,y, np,z) = (0, 0, 1). If the inter-
reflection is not considered, the reflected radiance under
a distant environment light source is given by [24],

Lp,out(�v) =
∫
�s∈Ωh

Lp,in(�s) ρ(�s,�v)max(0, sz)Vp(�s) d�s

(2)
where the unit vector �s denotes the light vector defined
over the upper hemisphere Ωh; sz denotes the z coor-
dinate of the light direction �s; Lp,in(�s) is the incident
radiance from the surrounding environment; ρ(�s,�v) is the
BRDF, ρ(�s,�v) and max(0, sz) can be collapsed into the
BRDF product function ρ∗(�s,�v) = ρ(�s,�v)max(0, sz);
and Vp(�s) is the visibility. Note that each element
has its own visibility function. Since the local frame
is employed, the illumination-contributing hemispheri-
cal environment changes from point to point. Hence,
the computational bottleneck is usually the rotation of
Lp,in(�s).

As our objective is not on the sophistication of render-
ing, but on the noise-resistant fitting of SH, let us first
consider a simple scenario when the surface reflectance
is diffuse. Our example becomes “shadowed diffuse
transfer without inter-reflection effect” [11]. Note that
our following discussion on the noise-resistant fitting re-
mains valid for other scenarios, such as glossy surfaces2.
Now, the reflected radiance is given by

Lp,out =
∫
�s∈Ωh

Lp,in(�s) ρmax(0, sz)Vp(�s) d�s . (3)

Clearly, ρmax(0, sz)Vp(�s) is a hemispherical function.
For the illumination with a distant environment, we

can express the environment lighting Lp,in(�s) by the SH
basis over the full sphere and ρmax(0, sz)Vp(�s) by the
SH basis over the hemisphere. The reflected radiance
becomes

Lp,out = �cT Ã�ι (4)

2For a glossy surface, we need to doubly SH-project the lighting
property both on the lighting domain and the viewing domain. In this
situation, the input domain of ρ(�s,�v)max(0, sz)Vp(�s) is a cross-
product of two hemispheres.

(a) (b) (c)

Fig. 2. Various sampling patterns over the hemisphere. (a) Hemi-
spherical uniformly distributed; (b) hemispherical regular grid; and
(c) scattered sampling.

where �c contains the SH coefficients of the reflectance
property and self-shadowing of the element; �ι contains
the SH coefficients of the environment; and Ã is the au-
tocorrelation matrix of the SH basis over the hemisphere.
By considering the pre-computation or the concept of the
dual basis, (4) becomes

Lp,out = �cT�̃ι (5)

where �̃ι = Ã�ι. Hence, the reflected radiance can be
efficiently obtained by calculating the dot product of
these two vectors3 [4].

For the local illumination due to a directional or point
light source with intensity of Lp,in, we need to determine
its incident light vector �s. The reflected radiance is then
computed as

Lp,out = Lp,inρmax(0, sz)Vp(�s) . (6)

As each surface element may have its own visibility
function, it is not desirable to store all visibility functions
plainly. A compact solution is to fit ρmax(0, sz)Vp(�s)
with the SH basis over the hemisphere.

For glossy and opaque surfaces illuminated under a
fixed lighting condition, the reflected radiance is a func-
tion of viewing directions, given by Lp,out(�v). We can
record the values of Lp,out(�v) as viewed along sampled
viewing directions. Meaningful viewing directions are on
the upper hemisphere. Hence, we can once again express
the reflected radiance Lp,out(�v) as a weighted sum of SH
basis functions over the hemisphere.

In the image-based relighting, each pixel is associated
with its own ABRDF [8] [23] [13]. If the viewpoint is
fixed, an ABRDF reduces to a spherical function in a
global coordinate system, given by P (�s). For certain sit-
uations such as outdoor natural illumination, meaningful
light vector samples are restricted to elevational angle
smaller than π

2 . In this case, we can approximate an
ABRDF as a weighted sum of the SH basis functions
over the hemisphere.

To obtain the SH coefficients of a spherical function
f(�s), we need to sample f(�s). In the above and many

3The details about the rotation of the environment and the pre-
computation of the environment can be found in [7] [10].
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(a) “ring” (b) “torus” (c) “dama”

Fig. 3. Three tested examples throughout the paper.

other rendering applications, only the upper hemisphere
�s ∈ Ωh or even scattered samples are available. When we
say hemispherical sampling, we refer to either uniform
(Fig. 2(a)) or regular (Fig. 2(b)) sampling on hemisphere.
When we say the sampling is scattered, the samples may
distribute on only a part of the sphere (Fig. 2(c)). For
example, the BRDF of a real surface is usually captured
over the upper hemisphere [25]. In the image-based
approach of reflectance measurement [26], the BRDF
is only captured at some parts of the sphere due to the
shape of the object and the relative orientation of the
camera.

III. EXPERIMENTAL SETTING

A. Rendering Examples

Throughout this paper, we use three examples to
illustrate the problem and verify our proposed methods
(Fig. 3). The first one is the image-based relighting while
the other two examples show reflection on 3D objects.
It should be noted that, in all tested examples, the
functions being fitted are hemispherical. These examples
are mainly for illustration purposes and may be different
from actual applications.

In the image-based relighting example, “ring”
(Fig. 3(a)), the viewpoint is fixed and reference images
are recorded under multiple lighting directions. Since
we are interested in the lighting of the shown objects
above the ground, only those light vectors on the upper
hemisphere are captured in this example. There is a set of
M reference images {fx,y(�s1), · · · , fx,y(�sM )} captured
under lighting directions {�s1, · · · , �sj, · · · , �sM}. Hence,
a pixel at spatial position (x, y) is associated with a
hemispherical function of light vector. All pixels share a
common coordinate system.

Example “torus” (Fig. 3(b)) shows a 3D diffuse torus
with self-shadowing being accounted for. The torus is
represented as a triangular mesh. Each vertex i is as-
sociated with a hemispherical function sampled in the
lighting dimension.

Example “dama” (Fig. 3(c)) shows a glossy 3D sculp-
ture. The lighting condition is assumed fixed. At each

vertex of the mesh, we record the reflected radiances
as viewed from sampled viewing directions. Since the
object is opaque and each vertex has its own local
coordinate frame, a hemispherical function of viewing
direction is stored at each vertex.

B. Further Compression

As each vertex/pixel may have its own local illumi-
nation properties (such as visibility and BRDF), there
can be tens of thousands of SH vectors to store. Further
compression is unavoidable. To exploit the data correla-
tion of SH coefficients between adjacent vertices/pixels,
the same-order coefficients from different vertices/pixels
are grouped to form one data source (or a map if
vertices/pixels are organized in grid structure). Hence
if the SH vectors are n-dimensional, n data sources (or
maps) are formed. To demonstrate the vulnerability of
the SH coefficients estimated by ULS methods, we com-
press these SH coefficients by some standard compres-
sion methods. Four types of data reduction/compression
methods are used throughout this paper, they are IEEE
half-float representation, S3TC-like texture compression,
uniform quantization, and wavelet-based compression.
Other compression techniques, such as vector quanti-
zation and clustered PCA (CPCA), would have similar
results.

1) Half-float: The 16-bit IEEE half-float represen-
tation is popular due to its wide support by modern
GPUs. In most graphics applications, no significant loss
in visual quality is observable, except in representing
large-magnitude SH coefficients.

2) S3TC: S3TC [27] is designed for compressing
color textures in game applications. However, current
implementations only support 8-bit integer data. At the
time we prepare this paper, the floating-point version
of S3TC is not yet available. Since the original SH
coefficients are in the 32-bit floating point format, we
implemented our own S3TC-like coding method for
floating point data. It effectively represents each SH
coefficient with 4.667 bits.

3) Uniform Quantization: Uniform quantization is a
standard compression method used in most compression
schemes. In our experiments, SH coefficients are quan-
tized to 8 bits per coefficient. The quantization interval
of each of the n data sources is calculated based on the
operational rate distortion function [28].

4) Wavelets: Wavelet-based coding receives much
attention in graphics research [29] [30] [31] due to its
multi-resolution nature and progressiveness. It has also
been adopted in the JPEG2000 image coding standard
as the core engine [32]. We use the 9/7 wavelet to
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decompose each SH coefficient map into dyadic structure
with 10 subbands. After that, we apply the standard
uniform quantization to these subbands [33].

IV. UNCONSTRAINED LEAST SQUARE METHOD AND

NOISE MODEL

A. Unconstrained Least Square

Before we continue, let us first investigate why the
ULS methods lead to significant visual artifacts. Let
f(�s) be the hemispherical function being approximated,
where �s ∈ Ωh. Given M sampled radiance values
�β = [f(�s1), · · · , f(�sM )]T under incident light directions
{�s1, · · · , �sM}, the SH coefficients can be obtained by the
least square solution of the following linear equation

�β = Y �c , (7)

where

Y =




y1(�s1) · · · yn(�s1)
...

. . .
...

y1(�sM ) · · · yn(�sM )


 .

We can use some ULS methods, such as generalization
inverse or recursive least square [34], [35], to obtain the
least square solution, given by

�c = A−1�b (8)

where A = YT Y is proportional to the autocorrelation
matrix of the SH basis functions on the hemisphere and
�b = YT �β is related to the hemispherical SH projection.

Fig. 4-6 show the annoying artifacts in all exam-
ples after further compressing the noise-sensitive SH
coefficients. All their SH coefficients are estimated by
the ULS. In example “ring”, the artifact is image-wise
due to its image-based nature. Even though the image-
based scene is only reduced to 16-bit half-float per SH
coefficient (considered as high bit-rate) in Fig. 4(b),
artifacts are observable near the silhouette of the rings.
With lower bit-rates (Fig. 4(c)-(d)), the artifacts become
unacceptable. Similar artifacts are found in other exam-
ples, “torus” (Fig. 5) and “dama” (Fig. 6), when the SH
coefficients are further compressed. It is shown that these
SH coefficients are highly sensitive to noise.

B. Noise Model

The artifacts come from the compression process. It
is interesting to investigate why common compression
methods generate serious artifacts. The answer is that
quantization or compression noise depends on the data
magnitude. In this subsection, we first model the noise
mathematically. Next, we explain why, together with

(a) Original
(32 bits per coeff.)

(b) Half-float
(16 bits per coeff.)

(c) S3TC
(4.667 bits per coeff.)

(d) Wavelet
(0.33 bit per coeff.)

Fig. 4. Relit images of the “ring” example after further compressing
SH coefficients estimated by ULS.

the large-magnitude SH coefficients, the noise induces
serious artifacts. We model the quantization effect as

ĉi = ci + δi ci ∀i (9)

where δi’s are independently identical random variables
with zero mean and variance σ2

δ . Their density function
has the symmetric property. The variance σ2

δ can be
considered as the percentage error on the SH coefficients.
In this model, we assume low-frequency and high-
frequency coefficients are quantized with the same bit-
rate. With this setting, we can ensure that high-frequency
effects (shadow and highlight) are preserved.

In (9), the term δi ci represents the quantization noise.
We assume that the quantization noise is proportional to
the magnitude of the SH coefficients. This assumption
is reasonable as it matches several standard quantization
schemes. For example, in the low-precision floating
point representation, the precision error is proportional
to the magnitude of the value. Another example is the
uniform quantization with entropy coding. From rate
distortion theory [36], the quantization error of a data
source under uniform quantization with entropy coding
is proportional to the variance of the data source, as well
as, the magnitude of the data source. Other compression
methods, such as vector quantization and clustered PCA,
also have similar behavior.
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(a) Original (32 bits per coeff.)

(b) Uniform quantization (8 bits per coeff.)

(c) Wavelet (4 bits per coeff.)

Fig. 5. Rendering results of “torus” after compressing SH coeffi-
cients estimated by ULS. The images on the left column show the
illumination under a HDR distant environment while the right column
shows the scene illuminated by a directional light source.

From (9), the average extra error Eq on the spherical
function due to the quantization is given by

Eq =
n∑

i′=1

n∑
i=1

E

[
δi′δici′ci

∫
Ωh

yi′(�s) yi(�s) d�s

]
, (10)

where E[·] is the expectation operator. Since δi’s are
independently identical random variables with zero mean
and variance σ2

δ , the expectation E [δi′δi] is equal to zero
for i �= i′. Hence, the average extra error is rewritten as

Eq =
n∑

i=1

σ2
δc

2
i

∫
Ωh

y2
i (�s) d�s

=
1
2
σ2

δ

n∑
i=1

c2
i . (11)

Note that
∫
Ωh

y2
i (�s) d�s = 1

2 for uniformly or regularly
sampled data. Equation (11) means that the extra error is

(a) Original
(32 bits per coeff.)

(b) Uniform quantization
(8 bits per coeff.)

Fig. 6. Rendering results of “dama” after compressing SH coeffi-
cients estimated by ULS.

proportional to the magnitude of ci’s. Hence, controlling
the magnitude of the estimated SH coefficients is crucial
even though the sampled input data is noise-free.

C. Magnitude of SH Coefficients

For a linear system in (7), the magnitude of SH
coefficients estimated by the ULS depends on the singu-
larity of A. Considering the eigen value decomposition
(SVD) [37] on the matrix A,

A = USUT , (12)

where U is a unitary matrix and S is a diagonal matrix
containing the non-negative eigen values in a descending
order. As mentioned above, the ULS solution is given by

�c = A−1�b = US−1UT�b . (13)

Since U is a unitary matrix, the norm of �c depends on
S−1 and �b. In the case of hemispherical SH basis (or
only part of sphere is covered), the higher order eigen
values are very small. That means the norm of S−1 is
very large and hence also the magnitude of �c.

The problem can be also explained from the view of
linear dependence. If some eigen values of A is very
small, the SH basis functions on the hemisphere are
nearly linear dependent. That means some unit norm lin-
ear combinations of SH basis functions have almost zero
values on the hemisphere. These linear combinations can
also be easily constructed from the SVD of A. One of
such unit norm linear combinations is given by

un,1y1(�s) + un,2y2(�s) + · · · + un,nyn(�s) , (14)

where un,i is the last column of U or the eigen vector
of A associated with the smallest eigen value. Hence,
in the ULS fitting, the coefficients of these combination
cannot be well determined and may be assigned with
large magnitudes. According to (11), the large magnitude
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(a) SH by ULS (b) SH by Sloan ULS (c) SH by CLS (d) SH by CEB

Fig. 7. The magnitude of SH coefficients of a typical pixel in example “ring”.

(a) Original
(32 bits per coeff.)

(b) Half-float
(16 bits per coeff.)

(c) S3TC
(4.667 bits per coeff.)

(d) Wavelet
(0.33 bit per coeff.)

Fig. 8. Relit images of the “ring” example. The SH coefficients
are obtained from the Sloan ULS (the third SH basis function is
removed).

together with the introduced quantization noise will lead
to large distortion in rendering.

Fig. 7(a) plots the magnitude of SH coefficients of
a typical pixel in the example “ring” (Fig. 4). It can
be observed that the magnitude of SH coefficients is
very large which means they are very noise sensitive
as implied by (11).

D. Sloan Unconstrained Least Square

In [11], Sloan et al. observed that the matrix A is
nearly singular. To make the matrix less singular or,
in other words, to reduce the condition number of the
matrix, they proposed to delete the third SH basis func-
tion for n = 25 before estimating the SH coefficients.
It should be noted that their motivation is to make the

(a) Original
(32 bits per coeff.)

(b) Uniform quantization
(8 bits per coeff.)

Fig. 10. Rendering results of “dama”. The SH coefficients are ob-
tained from the Sloan ULS (the third SH basis function is removed).

matrix less singular instead of controlling the magnitude
of SH coefficients. However, this Sloan ULS approach is
only applicable for the case of n = 25. It does not work
for other values of n, e.g. n = 49. Fig. 7(b) plots the
magnitude of SH coefficients with the third SH basis
function removed before estimation. The magnitude is
still very large. In fact, we have verified that no other
single basis function can achieve the similar effect.
Fig. 8-10 show the rendering results of SH coefficients
obtained with Sloan ULS. The visual artifact has been
slightly suppressed, especially in the cases of half-float
(Fig. 8(b)). However, annoying artifact still exists in
other cases. They visually confirm the noise sensitivity
of ULS methods including Sloan ULS.

One may argue that we can delete multiple SH basis
functions. However, the selection of SH basis functions
for deletion is very computationally intensive and data
dependent. We have tested this idea for a number of
hemispherical functions. Let us consider deleting 2 out
of the first 49 basis functions. We need to calculate the
condition numbers of A for all combinations. Among
all combinations, there are more than 100 candidate
combinations with very similar small condition numbers
(10 significant digits are the same). Selecting candidates
based on such similar condition numbers is risky because
their differences in condition number may be due to
the numerical errors. Therefore, the condition number is
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(a) Original (32 bits per coeff.) (b) Uniform quant. (8 bits per coeff.) (c) Wavelet (4 bits per coeff.)

Fig. 9. Rendering results of “torus”. The SH coefficients are obtained from the Sloan ULS (the third SH basis function is removed).

Fig. 11. The illustration of the constraint and the intermediate
solutions during searching.

not sufficient to measure the noise sensitivity. Different
candidates produce different SH vectors with substan-
tially different magnitudes. For instance, a candidate
produces a SH vector with norm of 6.51 while another
produces a SH vector with norm of 42. Unless we
compute all the SH vectors (from �b) and their norms
from these 100 candidates, there is no way to tell which
combination is optimal. That means the computation
is data dependent. Note that there are hundreds of
thousands of hemispherical functions in the rendering
applications. Such computation is prohibitively large. If
we consider deleting more than two basis functions,
this brute-force search becomes impractical even for
computing the condition numbers of all combinations.
For deleting 4 out of the first 49 basis functions, the
number of combinations is more than 200, 000.

V. CONSTRAINED SOLUTIONS

In this section, we propose two efficient methods
for estimating the SH coefficients from hemispherical
samples. We first impose a constraint on the SH vector.
The constraint is related to the energy of the sampled
radiance values. We then propose two fast methods to

efficiently control the magnitude of SH coefficients for
any value of n. Finally, we extend our method to general
scattered sampling.

A. The Constraint

In (10), the extra square error can be rewritten as

Eq =
1
2
σ2

δ �cT�c . (15)

The parameter σ2
δ can be considered as the percentage

error on the SH coefficients. Now, we impose a constraint
that the extra square error Eq due to the quantization
noise should be less than or equal to σ2

δ times the energy
of the spherical function f(�s). That means

1
2
σ2

δ �cT�c ≤ σ2
δ × Energy of the function (16)

�cT�c ≤ Ec, (17)

where the energy can be estimated from the sampled
values of f(�s).

B. Constrained Least Square

With the constraint (17), we can set up the following
constrained least square (CLS) cost function [37]

J2(�c) = ‖�β − Y �c‖2 + λ(�cT�c − Ec), (18)

where λ > 0. Its constrained solution is given by

�c = (A + λIn×n)−1�b , (19)

where In×n is a n×n identity matrix. According to the
constraint

�cT�c = �bT (A + λIn×n)−2�b ≤ Ec , (20)

λ should satisfy the following inequality

�bT (A + λIn×n)−2�b ≤ Ec . (21)

If we set λ = 0, the least square solution is obtained. If
we set λ → ∞, �c is a zero vector. As λ increases, the
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PSNR (dB)
ULS 32.21
CLS 31.32

TABLE I

THE AVERAGE PSNR BETWEEN PAIR OF REFERENCE AND RELIT

IMAGES.

norm of �c decreases monotonically. To understand this
property, we take the derivative on �cT�c with respect to
λ, we get

d

dλ
(�cT�c) = −2�bT (A + λIn×n)−3�b. (22)

Since (A + λIn×n) is positive definite when λ ≥ 0,
the derivative is negative and the square norm of �c is a
decreasing function of λ. From (18), J2 is an increasing
function of λ. Our goal is to find out the smallest value of
λ such that (21) is satisfied. We use an iterative approach
to determine λ by first assigning an initial value of λ and
then using a simple binary search to estimate a suitable
value of λ based on (21).

Fig. 11 illustrates our idea in 2D. We need to search
for the smallest λ that falls in the constraint region
(enclosed by the solid line). If the ULS method is
used, the solution has the smallest error (Table I) but
relatively large magnitude (Fig. 7(a)). Table I shows
the error in the relighting example “ring” obtained by
measuring the peak-signal-noise-ratio (PSNR) between
every pair of reference and relit images. When the CLS
method is used, the PSNR decreases a little bit only
(Table I) but the magnitude of the solution is greatly
reduced (Fig. 7(c)). From Fig. 12-14, we can observe that
the proposed CLS can effectively suppress the rendering
artifact due to the quantization noise.

C. Speed Up

In (21), we need to calculate a matrix inverse with size
n×n. If we only need to estimate the SH coefficients of
one spherical function, the computation is not so heavy.
However, in rendering applications, there are massive
number of spherical functions (one spherical function per
vertex/pixel). As every spherical function is associated
with the same A, the searching process for λ can be
sped up by considering the symmetric property of A.
Consider the SVD on A is A = USU T , where U is a
unitary matrix and S is a diagonal matrix containing
the non-negative eigen values in a descending order.
The constrained solution (19) is also a solution of the
following equation

�β = Y′ �c′ , (23)

(a) Original
(32 bits per coeff.)

(b) Half-float
(16 bits per coeff.)

(c) S3TC
(4.667 bits per coeff.)

(d) Wavelet
(0.33 bit per coeff.)

Fig. 12. Relit images of the “ring” example after further compressing
the noise-resistant SH coefficients estimated by CLS.

where Y ′ = YU and �c′ = UT�c. The solution is given by

�c′ = (S + λIn×n)−1 �b′ (24)

where �b′ = Y′T �β. The constraint (21) can be rewritten
as

�b′T (S + λIn×n)−2�b′ ≤ Ec . (25)

Note that every spherical function is associated with the
same A, as well as the same S, which can be pre-
computed. The calculation in (25) is simpler than that
of (21) because the matrix S is a diagonal matrix while
A is not. With the above formulation, the complexity
of searching is O(n) for each iteration. The complexity
for calculating �c from the searched λ is O(n2), which
is same as that of the ULS. The complexity of the
hemispherical SH projection (the evaluation of �b) is
equal to O(Mn). Therefore, the total time complexity
of the CLS is O(kλn + n2 + Mn), where kλ is the total
number of iterations in searching for λ. Typical value of
kλ is equal to 32. In the binary search, the initial value
is set to 1 and the initial lower bound is set to zero.

D. Extension to Scattered Sampling

Although our derivation so far assumed the sampling
is hemispherical, we can extend to the derivation of
scattered sampling and obtain similar equations. For
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(a) Original (32 bits per coeff.)

(b) CLS, uniform quantization (8 bits per coeff.)

(c) CLS, wavelet (4 bits per coeff.)

Fig. 13. Rendering results of “torus” after compressing the noise-
resistant SH coefficients estimated by CLS.

scattered sampling, sample values cover only part of the
sphere Ω′. In this case, the integration

∫
Ω′ y2

i (�s) d�s = κi

are different for different i. In this case, the objective
function is

J ′
2(�c) = ‖�β − Y �c‖2 + λ(�cT Dκ Dκ �c − E′

c), (26)

where

Dκ =




√
κ1 0 0 · · · 0
0

√
κ2 0 · · · 0

... 0
. . .

... 0
0 · · · · · · · · · √

κn




and E ′
c is the energy of the function f(�s). We can apply

a linear transform on �c and Y , given by

�c∗ = Dκ�c (27)

Y∗ = YDκ
−1 (28)

A∗ = Y∗T Y∗ . (29)

(a) Original
(32 bits per coeff.)

(b) Uniform quantization
(8 bits per coeff.)

Fig. 14. Rendering results of “dama” after compressing the noise-
resistant SH coefficients estimated by CLS.

The objective function becomes

J ′
2(�c

∗) = ‖�β − Y∗ �c∗ ‖2 + λ(�c∗T �c∗ − E′
c) , (30)

Now, we can use the method mentioned in Section V-C
to solve �c∗. After that, we can obtain �c = Dκ

−1�c∗.

E. Constrained Eigen Basis

The work of Sloan et al. [11] suggests that we can
remove some less important SH basis functions while
the constraint is still held. However, as mentioned in
Section IV, the complexity of directly removing SH
basis functions is too high. Instead of deleting SH basis
functions, we can develop a novel and efficient method
to delete basis functions in a transformed domain. The
method is called the constrained eigen basis (CEB). It
estimates the constrained SH coefficients tailored for
uniform hemispherical sampling. It does not require a
search of λ as in the CLS.

Consider a SVD version of ULS, given by

�c = A−1�b = US−1UT�b . (31)

With the above definition, the function f(�s) can be
approximated as

f(�s) ≈ �yT (�s)�c =




y1(�s)
...

yn(�s)




T

US−1UT�b . (32)

In the above equation, the term



y1(�s)
...

yn(�s)




T

U =




e1(�s)
...

en(�s)




T

(33)

define a new basis, namely the eigen basis, given by


e1(�s)
...

en(�s)


 = UT




y1(�s)
...

yn(�s)


 . (34)
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The eigen basis is obtained by applying a unitary trans-
form, defined by eigen vectors of A, on the original
SH basis functions. As the matrix A is proportional to
the autocorrelation matrix of the SH basis functions on
the hemisphere, the higher order eigen basis functions
are less important to reconstruct the SH basis functions.
We expect that deleting such higher order eigen basis
functions in (32) does not degrade the approximation.
When some eigen basis functions are removed, it is
identical to estimate the SH vector with less number of
elements in S−1, given by

�c = U ′S′−1U ′T�b . (35)

where

U ′ =




u1,1 · · · u1,k

u2,1 · · · u2,k
...

...
...

un,1 · · · un,k




and

S′−1 =




s−1
1,1 0 · · · 0

0 s−1
2,2

... 0
... · · · . . .

...
0 0 · · · s−1

k,k




.

Since higher order si,i’s have the small eigen values,
removing them in (31) can improve the magnitude of
SH coefficients. In other words, we can apply an ordered
construction approach to the eigen basis in order to
estimate the SH coefficients based on (35). Since the
order of eigen basis functions and the SVD are the
same to every spherical function, they can be pre-
computed. Moreover, due on the orthonormality of U ,
the construction can be done incrementally. Note that the
number of removed eigen basis functions can be different
for different spherical functions being approximated. By
transforming the coefficients of the eigen basis back to
the hemispherical SH domain, we can ensure that all
spherical functions are represented by the same number
of SH coefficients. Such regularity of SH dimension is a
desired property for further data compression. For each
spherical function, the construction procedure can be
summarized by the following pseudocode.

Compute the projection �b
Set sum= 0 and k = 1
while sum < Ec

zk = s−1
k,k �uT

k
�b, where �uk is

the k-th column vector of U .
sum = sum+z2

k

k = k + 1
�c = [�u1 · · · �uk−1]T [z1 · · · zk−1]

In above pseudocode, since vectors �uk’s are an or-
thonormal basis, the norm of the SH vector is equal to
that of the vector �z. Hence, we can use a variable sum
to accumulate the z2

k until the constraint is not satisfied.
The accumulator sum is equal to �cT�c when the first k
eigen basis functions are used. Since all hemispherical
functions share the same eigen basis functions e i(�s)’s,
the complexity of the above method is O(n2) only.
No searching of λ is required. The total complexity is
O(n2 + Mn).

Note that this efficient algorithm only works for
hemispherical sampling. For scattered sampling, we need
to re-scale SH coefficients by κi’s. Variable sum no
longer equals the magnitude of SH coefficients and
hence cannot be used for checking the constraint. We
need to reconstruct the SH coefficient vector �c. The
complexity of reconstructing �c from z is O(n2). Hence,
for scattered sampling, the total complexity of the CEB
is O(n3 + Mn) and not efficient. Therefore, the CEB
should be adopted for hemispherical sampling while the
CLS should be adopted for scattered sampling.

Although both CPCA and CEB use the concept of
the eigen domain, they actually process the data in
the different domains. CPCA works on the SH vectors
estimated and hence it cannot control the magnitude of
SH vectors. Note that reducing the dimensionality of
the estimated SH vectors (based on mean square error)
is not equivalent to reducing the magnitude. According
to the property of PCA, the sum of the squared first
few principal components is close to the sum of the
original vector. On the other hand, our CEB works on
the hemispherical basis functions. The rendering results
of using CEB is quite similar to that of using CLS. Due
to the page limit, the rendering results of using CEB are
not included in this article. Readers are refered to the
webpages (listed at the end of this article) for all visual
results.

VI. COMPARISON AND RESULTS

Table II summarizes the property of various ap-
proaches that we have discussed. All approaches have
the similar complexity when hemispherical data are
considered. The CEB is slow for scattered sampling.
The ULS and Sloan ULS (deleting the third SH basis
function) are not noise-resistant.

To compare the noise-resistance of four different SH
estimation methods (ULS, Sloan ULS, CLS , and CEB),
we use the example “ring” (Fig. 3(a)). For each estima-
tion method, the first 49 SH coefficients are estimated
for each pixel. The same SH coefficients from different
pixels form a SH coefficient map. We then further
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Complexity for Complexity for Noise
Hemispherical Data Scattering Data Resistance

ULS O(n2 + Mn) O(n2 + Mn) NO
Sloan ULS O(n2 + Mn) O(n2 + Mn) NO

CLS O(kλn + n2 + Mn) O(kλn + n2 + Mn) YES
CEB O(n2 + Mn) O(n3 + Mn) YES

TABLE II

COMPARISON OF VARIOUS APPROACHES FOR FITTING SPHERICAL

SAMPLES.

Plain S3TC-compressed
SH coefficients (dB) SH coefficients (dB)

ULS 32.21 15.28
Sloan ULS 31.67 24.31

CLS 31.32 29.73
CEB 30.75 29.79

TABLE III

PSNR OF THE RELIT IMAGES IN “RING”. A FLOATING-POINT

S3TC METHOD IS USED FOR FURTHER COMPRESSING SH

COEFFICIENTS.

compress these SH coefficient maps with S3TC and
wavelet-based coding.

The statistical results are shown in Table III and
Fig. 15 in the form of peak-signal-to-noise ratio (PSNR).
From Table III, if the estimated SH coefficients are not
further compressed with S3TC (4.667 bits per coeffi-
cient), the PSNR values of different estimation methods
are similar. However, when SH coefficients are fur-
ther compressed, the performance of ULS is drastically
reduced. Although Sloan ULS is better than ULS, it
cannot achieve the quality as CLS and CEB do. In
Fig. 15, we plot the PSNR of various methods against
the bit-rate of the wavelet-based compression on the SH
coefficients. Even we use a higher bit-rate to compress
SH coefficients, say, 2 bits per SH coefficient, PSNR
values of ULS are still very low. The low performance
of ULS is consistent for various bit-rates. Sloan ULS
is better, but still far from satisfactory. On the other
hand, PSNR values of CLS and CEB are only slightly
affected by quantization noises. They demonstrate the
noise-resistance of the estimated SH coefficients.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

This paper discusses how the magnitude of the SH
coefficients affects the rendering quality. By introducing
a noise model, we show that the extra error from the
quantization noise is proportional to the magnitude of
the estimated SH coefficients. We demonstrate that SH
coefficients estimated by existing ULS methods are sen-
sitive to the quantization noise. Two effective and fast
noise-resistant methods, CLS and CEB, for estimating
the SH coefficients are presented to minimize the effect
of quantization noise. Statistical and visual comparisons
of different SH estimation methods have also been given.
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Sloan ULS
CLS
CEB

Fig. 15. PSNR of relit images in “ring”. A wavelet-based coding is
used for further compressing SH coefficients with various bit-rates.

To sum up, the two proposed methods effectively
noise-proof the SH coefficients in both image-based re-
lighting and 3D rendering applications. Statistics shows
that the CLS is slightly better than the CEB. On the other
hand, the complexity of using CEB for hemispherical
data is much smaller than that of the CLS because
CEB does not require the iterative search of constraint
parameter λ.

Currently, our methods only handle one constraint.
When multiple constraints are required, modification and
even redesign of algorithm is needed. This multiple-
constraint situation is worth for study in the future as
modern GPUs impose various limitations on the input
data.

WEB AVAILABILITY

Due to the page limit, not all visual results can
be shown in this article. Readers are referred to the
following webpages for a complete visual comparison
of various SH estimation methods. Source codes of the
proposed methods are also available for download.

http://www.cse.cuhk.edu.hk/∼ttwong/papers/shfit/shfit.html

http://www.ee.cityu.edu.hk/∼csleung/
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