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Fig. 1. Existing image downscaling methods are not able to generate pixel arts with sharp enough edges. Our method synthesizes pixel arts with crisp edges
and fine local details. The scaling factor of all results is 1/6.
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In this paper, we present a novel unsupervised learning method for pix-
elization. Due to the difficulty in creating pixel art, preparing the paired
training data for supervised learning is impractical. Instead, we propose an
unsupervised learning framework to circumvent such difficulty. We leverage
the dual nature of the pixelization and depixelization, and model these two
tasks in the same network in a bi-directional manner with the input itself as
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Fig. 2. Sharpness in thin edges. This cartoon character has very thin black
edge surrounding his face, hair, and fingers. (b) “Perceptual” is blurry and
has artifacts. (c) “Content-adaptive” can give a sharper and clearer result
but is still blur thin edges. Our result (d) which is directly generated by our
network shows a clean pixel art with sharpest edges even the edges are thin.
(Input image ©Nintendo Co., Ltd.)

training supervision. These two tasks are modeled as a cascaded network
which consists of three stages for different purposes. GridNet transfers the
input image into multi-scale grid-structured images with different aliasing
effects. PixelNet associated with GridNet to synthesize pixel arts with sharp
edges and perceptually optimal local structures. DepixelNet connects the
previous network and aims to recover the pixelized result to the original
image. For the sake of unsupervised learning, the mirror loss is proposed to
hold the reversibility of feature representations in the process. In addition,
adversarial, L1, and gradient losses are involved in the network to obtain
pixel arts by retaining color correctness and smoothness. We show that
our technique can synthesize crisper and perceptually more appropriate
pixel arts than state-of-the-art image downscaling methods. We evaluate
the proposed method with extensive experiments on many images. The
proposed method outperforms state-of-the-art methods in terms of visual
quality and user preference.
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1 INTRODUCTION
Pixel arts stem from the limited resolution and limited colors on
display of early gaming devices (e.g. Game & Watch) and computer
systems [Goldberg and Flegal 1982]. Nowadays, pixel arts has al-
ready become an art form. Artists had to carefully and manually
design the graphics in a pixel-by-pixel manner. Such process is te-
dious and time consuming. A pleasant pixel art typically exhibits
clear global structure and sufficient local details. This becomes very
challenging when the input picture is very busy.

A natural computational method to generate pixel arts is to down-
sample the input image. Öztireli and Gross [2015] proposed an opti-
mization solution using perceptual image quality metric. It is able
to retain the perceptually important features, but it tends to blur
the edges (Fig. 2(b)). Moreover, the optimization process is inde-
pendently performed on individual color channels, color shifting
artifacts may be resulted (hairs in Fig. 2(b)). Kopf et al. [2013] pro-
posed a content adaptive method by aligning the kernels with the
local image features in a bilateral manner. Although their results is
crisper than that from image downscaling, edges may still be blurry
(Fig. 2(c)) due to its kernel-based nature. Note that such antialiased
edges is not desirable in pixel arts. Besides, handdrawn pixel arts
also summarize the original visual content by selectively retain-
ing important ones. All these are very challenging in generating
pleasant pixel arts.

In this paper, we propose a deep unsupervised learning approach
for pixelization. The rationale we do not use supervised learning
is because preparing pixelized training data is very costly, as high-
quality pixel arts are mostly by hand. Instead, we propose an unsu-
pervised learning utilizing a neural network architecture sharing
the similar spirit as cycleGAN [Yi et al. 2017; Zhu et al. 2017]. We
train our network in a bi-directional manner. In the forward di-
rection, we pixelize an input image. In the reverse direction, the
pixel art is converted back to the original image. These two tasks
are modeled as a cascaded network. While training in the forward
direction, our network takes a cartoon art C as input. GridNet pro-
duces multi-scale grid-structured images, and followed by PixelNet
to generate pixel art P . DepixelNet recovers P back to cartoon art
C ′, i.e., C → P → C ′. In the backward direction, given a pixel
art P , we have P → C → P ′, just similar to forward. In order to
hold the reversibility of our network, we want C ≈ C ′ and P ≈ P ′.
We also propose a mirror loss to minimize the difference between
feature maps in pixelization and depixelization (Fig. 3). It ensures
the identity of the input image after a training cycle. The direct
output of the forward network is an image of the same resolution as
the input clip art, but with an appearance of “low-resolution” pixel
art. Through a post-processing nearest-neighboring step, the true
low-resolution pixel art is obtained. With this network design, the
entire network can be trained using the input image itself without
the high-quality corresponding pixel art as in supervised learning.

We have evaluated the proposed method on various types of input
including cartoon, vector drawing, and even natural photograph,
convincing pixel arts are obtained in most cases. In addition, due
to our bi-directional training design, a side effect of our method is
depixelization. To validate the impact of each subnetwork and loss,
we examine different combinations of architectures and losses via
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experiments. Our method shows clear preference in pixelization
over existing methods.

2 RELATED WORKS

2.1 Image Downscaling
The most straightforward way to generate pixel art is image down-
scaling, based on the sampling theory [Shannon 1949]. Filters (e.g.,
bilinear, bicubic, and Lanczos) have beenwidely used in image down-
scaling. However, while a filter removes one artifact (e.g., aliasing,
ringing or blurring), it may introduce another. All these artifacts
lower the visual quality of pixel art. Recently, [Öztireli and Gross
2015] proposed an optimization method to preserve the fine details
and the local structures, using a perceptual image quality metric.
[Weber et al. 2016] preserve high-frequency details based on con-
volutional filters. [Kopf et al. 2013] proposed a content adaptive
method by aligning the kernels with the local image feature in a
bilateral manner. However, these methods tend to eliminate the
aliasing appearance in which pixel artists intend to preserve. In ad-
dition, due to their kernel-based nature, they can hardly synthesize
pixel art with sharp edges.

2.2 Optimization Approach
Rendering the content in a low-resolution image can be regarded
as an optimization problem. Dippé et al. [1985] applied antialiasing
to reduce artifact. Inglis et al. [Inglis and Kaplan 2012; Inglis et al.
2013] proposed method to rasterize vector line arts and curves with
visually pleasing results. The latter method supports “manual anti-
aliasing.” To synthesize pixel art animation, [Kuo et al. 2016] first
generates an initial animation sequence by applying image warping
to a set of selected key frames. They are then jointly optimized to
preserve the prominent feature lines of each frame. [Gerstner et al.
2012] proposed an iterative process to generate abstraction of image
in low resolution and with limited colors. Their approach updates
SLIC superpixels [Achanta et al. 2012] and refine the color alterna-
tively. It cannot synthesize perceptually correct results where many
colors gather within a small region. However, all above optimization-
based approaches pay more attention to the accuracy than the aes-
thetic consideration as in our pixel art application, and hence cannot
be directly applied.

2.3 Image-to-image Translation
Neural network becomes an effective and efficient approach to
image-to-image translation problem. Isola et al.[2017] proposed
to use the generative adversarial network [Goodfellow et al. 2014],
for translating one image to another domain, e.g., labels to street
scene or edge to photo. Several variants of CNN-based models [Chen
and Koltun 2017; Isola et al. 2017; Long et al. 2015; Mirza and Osin-
dero 2014; Odena et al. 2016; Xie and Tu 2015] have been proposed
recently. Their performances are highly dependent on paired train-
ing data. However, paired training data is hard to gather or prepare
in our pixel art application, due to the difficulty in creating pixel
art.
Two concurrent works [Zhu et al. 2017] and [Yi et al. 2017] pro-

posed to use cycle consistency loss to relieve the requirement of
paired data. However, directly applying these models to pixel art

may result in uneven pixel grid sizes andmay not retain perceptually
important structure.

3 APPROACH
The proposed cascaded network architecture is shown in Fig. 3.
The bi-directional training process allows us to generate a pixel
art from a cartoon art and vice versa. This network has two goals
that correspond to the two training directions. We denote them as
Forward and Backward respectively.
Forward: Given an input image ci , we want to generate its pixel
art image pci , that can be recovered to an image c ′i such that ci ≈ c ′i .
The forward training flow is:GridNet → PixelNet → DepixelNet
(Fig. 3).
Backward: This is the reverse of the forward one. Given a pixel
art pj , we want to depixelize it to cpj , that can be further recovered
to a pixel art p′j such that pj ≈ p′j . The backward training flow is:
DepixelNet → GridNet → PixelNet (Fig. 3).

3.1 Training Data
We denote our input training dataset as S = {P,C}, where P =
{pn ,n = 1, ...,N } indicates the pixel art images and C = {cm ,m =
1, ...,M} indicates the cartoon arts. We collect all our training data
from the internet. Our training data are all unpaired since manually
creating pixel art from its corresponding cartoon is tremendously
tedious and time consuming. In our training dataset, 900 cartoon art
images and 900 pixel art images are collected. Fig 4(a) & (b) show
some of our training pixel arts and training cartoon arts, respectively.
During each training iteration, we randomly select one cartoon art
image ci ∈ C and one pixel art image pj ∈ P. ci and pj are regarded
as the reference image of each other.

3.2 Network Architecture
We design a cascaded network which consists of three subnetworks,
GridNet (GN ), PixelNet (PN ) and DepixelNet (DN ). Each serves
for different purposes. GridNet associated with PixelNet can be
regarded as the generator of pixel art. GridNet itself is designed to
extract features and generates initial pixel art images with multi-
scale grid structures. PixelNet aims at producing crispy edges while
keeping perceptually important regions. DepixelNet depixelizes the
pixel art to generate cartoon art.

3.2.1 GridNet and PixelNet. GridNet is modeled by a sequence of
blocks consisting of three types of layers, including convolution
layer, instance normalization layer and activation layer. In the mid-
dle of this subnetwork, we insert several residual blocks [He et al.
2016] to reduce artifacts and accelerate the learning process.

To generate different aliasing effects, we concatenate a 7×7 Conv-
InstanceNorm-ReLU layer to obtain the initial pixel art results for
the last three conv-blocks. Reflection padding is utilized to eliminate
the artifacts at the border of image. Three output images correspond-
ing to 1

4 ,
3
16 and 1

8 of the input resolution are obtained. Training
the network with multiple scales not only generates results with
different aliasing effects, but also improves the generalization and
representability of our network. Because the features from different
layers represent details and structure information under different
scales, training the network in multi-scale can be regarded as a
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Fig. 3. Network architecture for unsupervised pixelization. It consists of three subnetworks, GridNet, PixelNet and DepixelNet. GridNet is designed for
initializing the cartoon art to grid-structured image with different aliasing effects. PixelNet further processes these images with refined and abstracted image
content. DepixelNet is used for recovering cartoon art from pixel art. Forward path starts from GridNet and ends at DepixelNet. It generates pixel art from
cartoon art then recovers back to pixel art. On the contrary, the goal of backward path is the reverse of forward path. The mirror loss in both directions is
designed to keep the regularity of image. (©Nintendo Co., Ltd.)

(a) Pixel arts

(b) Cartoon arts

Fig. 4. Samples of our training data.

coarse-to-fine training process. We evaluate the performance with
and without multi-scale training in Section 4.3.

GridNet acts as a downscaling component and its results contain
weak and blurry edges. As a consequence, we design PixelNet to

produce crispy edges and retain perceptually important content.
It is a fully convolutional network [Long et al. 2015] which con-
sists of three types of blocks, including conv-block, res-block and
deconv-block. Similarly, each conv-block contains three different
types of layers, including convolution layer, instance normalization
layer and activation layer. After three consecutive conv-blocks, we
concatenate 9 res-blocks and 2 deconv-blocks to PixelNet. Deconv-
block consists of three types of layers, deconvolution layer, instance
normalization layer and activation layer.

Fig. 5 illustrates the process and effectiveness of our two-combo
pixel art generator. Given a cartoon art image, GridNet generates
three scales output images. Each corresponds to a different reso-
lution (grid size), and hence different aliasing effect. But the small
resolution restricts the generation of pixel art. Hence, we upsample
their outputs to the resolution of the input image using nearest
neighbor. As shown in Fig. 5, the generated results by GridNet con-
tain different scales of details, but the edges are weak and blurry.
PixelNet takes the upsampled output from GridNet as input, and
generates refined and abstracted pixel art.

3.2.2 DepixelNet. The network structure of DepixelNet is exactly
the same as PixelNet. It can be regarded as the generator of cartoon
art. Given three scales of pixel art images, DepixelNet randomly
selects one and generates its cartoon output.
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Fig. 5. Our two-combo pixel art generator is able to generate crisp and
abstracted pixel art. (Input image ©Nintendo Co., Ltd.)

3.3 Objective Function
During the training process, we introduce several losses to con-
strain the network. Since each subnetwork has its own goal, each
subnetwork has a different objective function.

GridNet takes a cartoon art as input then outputs an initial pixel
art. Its objective function is:

LGN =LGAN(GN ,DGN , F ) + LL1&grad(GN , F )+

LL1&grad(GN ,B),
(1)

where F and B denote the training directions of forward and back-
ward, respectively. As in the forward direction, ground truth pixel
art is not available, we apply adversarial loss [Goodfellow et al. 2014]
to discriminate the distribution (C → P ). DGN is the discriminator
in GridNet. For the same reason, we use the L1 loss to maintain the
correctness of color, and the gradient loss is introduced to guarantee
the smoothness and sharp edge of image. In the backward direction,
the L1 and gradient losses are compared to the input pixel art.

As we mentioned in Section 3.2.1, the upsampled output of Grid-
Net is fed to PixelNet, so as to get a refined pixel art. Hence, the
complete objective of PixelNet is defined as follow:

LPN =LGAN(PN ,DPN , F ) + LL1&grad(PN , F )+

Lmirr(DN → PN ,B),
(2)

where DPN is the discriminator in PixelNet. L1 and gradient losses
are designed for the color and edge correctness. Mirror loss in the
backward direction is introduced to ensure the reversibility of the
whole network. The mirror loss is detailed in the following section.

DepixelNet takes a pixel art as input, then output a cartoon art.
Thus, the objective contains an adversarial, L1, and gradient losses in
the backward direction. Mirror loss is used in the forward direction
to regularize the network:

LDN =LGAN(DN ,DDN ,B) + LL1&grad(DN ,B)+

Lmirr(GN → DN , F ).
(3)

3.3.1 Mirror Loss. Due to the unsupervised training nature, we
propose mirror losses in both directions to ensure the reversibility
of our bi-directional training process. In the forward direction, we
take the cartoon art ci as input and generate its pixel art pci then
convert it back to the cartoon art c ′i . Mirror loss here is to guarantee
ci ≈ c ′i and the feature maps in corresponding layers to be as similar
as possible. Following is the definition of mirror loss in the forward
direction:

Lmirr(GN → DN , F ) =
l∑
ωlE

l
mirr(F ) + ωoutE

out
mirr(F ), (4)

where F denotes the forward direction. E ·
mirr is the mirror loss

between feature maps (and output image). Elmirr is defined as:

Elmirr(F ) =
∑f lGN − f N−l

DN


1
, (5)

where N indicates the total number of blocks in each subnetwork
(all of them have the same number of blocks). f denotes the feature
maps in the final layer of a block. We calculate the L1 loss of feature
maps between block l in GridNet and block N − l in DepixelNet. We
want the feature maps in corresponding blocks to be as similar as
possible, just like a mirror. In practice, we let l ∈ {1, 2, 3}.

Mirror loss Eoutmirr between input and output is defined as:

Eoutmirr(F ) =
∑ci − c ′i


1, (6)

where ci is the input cartoon and c ′i is the output cartoon generated
by DepixelNet.
Mirror loss in the backward direction is similar to that in the

forward direction. The only difference is that we calculate the mirror
loss in backward between DepixelNet and PixelNet (the first and
the last subnetwork respectively). It is defined as:

Lmirr(DN → PN ,B) =
l∑
ωlE

l
mirr(B) + ωoutE

out
mirr(B). (7)

We define the backward mirror loss for block l as:

Elmirr(B) =
∑f lDN − f N−l

PN


1
. (8)

Backward mirror loss between the input and output is defined as:

Eoutmirr(B) =
∑pj − p′j


1
. (9)

In Section 4, we conduct an experiment to evaluate the perfor-
mance of our network with and without the mirror loss.

3.3.2 Adversarial Loss. We introduce an adversarial loss [Goodfel-
low et al. 2014] for each subnetwork. The loss in GridNet is defined
as:

LGAN(GN ,DGN , F ) =Ep∼pdata(p)[log(DGN (p))]+

Ec∼pdata(c )[log(1−DGN (GN (c)))],
(10)

where DGN is the discriminator. The Discriminator’s objective is
to maximize Eq. (10) while GN is to minimize it. Then we have
minGNmaxDGN LGAN(GN ,DGN , F ). Same as GridNet, PixelNet
and DepixelNet also have the adversarial lossesLGAN(PN ,DPN , F )
and LGAN(DN ,DDN ,B).
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3.3.3 L1 and Gradient Losses. Adversarial loss has been demon-
strated to be effective in many image-to-image translation problems.
However, our training data are unpaired. We cannot guarantee the
color correctness along the whole process by only applying adver-
sarial loss. For each subnetwork, we apply L1 loss to ensure the
color consistency and gradient loss to ensure image smoothness
and sharpness of edges. The L1 and gradient loss for GridNet, Pix-
elNet and DepixelNet are defined in Eq. (11), Eq. (12) and Eq. (13)
respectively,

LL1&grad(GN , F ) =
r∑

(ErL1(GN , F ) + E
r
grad(GN , F )), (11)

LL1&grad(PN , F ) =
r∑

(ErL1(PN , F ) + E
r
grad(PN , F )), (12)

LL1&grad(DN ,B) =
r∑

(ErL1(DN ,B) + E
r
grad(DN ,B)), (13)

where r indicates a specific aliasing scale, as our method is able to
synthesize pixel arts with different aliasing effects. We here sum up
L1 and gradient losses under all aliasing scales.
We define L1 loss in the forward direction at a specific aliasing

scale r by:
ErL1(GN , F ) =

∑I rin − I rout

1. (14)

We resize Iin → I rin such that the resolutions of I rin and I rout are iden-
tical. We define gradient loss in the forward direction at resolution
r by:

Ergrad(GN , F ) =∑ [|I rin(x ,y) − I rin(x − 1,y)| − |I rout(x ,y) − I rout(x − 1,y)|

1+|I rin(x ,y) − I rin(x ,y − 1)| − |I rout(x ,y) − I rout(x ,y − 1)|


1

]
.

(15)

L1 and gradient losses in other subnetworks are similar to Eq. (14)
and Eq. (15).

3.4 Training Details
Both training pixel art and cartoon data contain 900 images. We
resize all images to 256 × 256 during the training process. Note
that our model can handle input images with any resolution. When
we train this network in the forward direction, we choose one of
the three refined pixel art results randomly as its input, in order to
increase the generalization of DepixelNet. Following the training
strategy of [Shrivastava et al. 2017], discriminators are updated
using the history of generated images instead of the latest one.
Thus, we create a buffer to store the last 30 generated images. For
all the experiments, we use the Adam solver [Kingma and Ba 2014]
with the batch size of 1. All networks are trained with a learning
rate of 0.0002 initially. After 100 epochs, we linearly decay the rate
to zero in 150 epochs.

Mirror loss in the backward direction is different from that in the
forward one. Since PixelNet outputs three results, there are three
mirror losses between input and output in Eq. (7). We choose the
minimal one as our objective in order to pass the most correct one
to our network, as the aliasing scale is unknown for the input pixel
art.

4 RESULTS AND DISCUSSION
We have tested our method over images collected from the internet,
and test images from [Kopf et al. 2013]. They are excluded in the
training set. All our results are generated using the (N − 2)-th conv-
block in the GridNet. This effectively means our network output
always have a pixelized appearance in the scale of approximately
1/6 of the input image resolution.

4.1 Comparison to Existing Methods
We compare our pixel art generation results to four image down-
scaling techniques, including bicubic, “content-adaptive” [Kopf et al.
2013], “perceptual” [Öztireli and Gross 2015] and an image abstrac-
tion method [Gerstner et al. 2012]. Their results are generated using
the implementation provided by their original authors.

Note that our network output has the same resolution as the input,
while our competitors are in low resolution. To have a fair compari-
son, we downsample our network output to the same low-resolution
image by voting the major color within the high-resolution pixels
that corresponding to the low-resolution pixel. In the rest of the
paper, we denote our results directly from the network as “network
output,” while the downsampled one as “voting.” Due to the page
limit, we cannot show both “network output” and “voting” in all
examples. But they are all shown in the supplementary material.
Fig. 1, 2 & 6 visually compare the results. Edges in results of

“perceptual” and “content-adaptive” tend to be more blurry due to
their kernel-based nature. The minority colors, such as edges, tend
to be dominated by the surrounding majority colors. For example,
the delicate eye in the blue box of Fig. 2(a). In contrast, our result
(Fig. 2(d)) preserves the crispy edges. In Fig. 6, the bicubic results
are the most blurry ones. The “perceptual” results in Fig. 6(c) ex-
hibit the color shifting artifacts at regions crowded with multiple
colors. “Content-adaptive” results (Fig. 6(d)) produce sharper edge
than that of bicubic (Fig. 6(b)) and “perceptual” (Fig. 6(c)). However,
weak edges are still observable, and some visually important details
are lost. Our competitors generate fewer jaggy edges and aliasing
appearance that are desirable in pixel art. Fig. 6(e) shows results
generated by [Gerstner et al. 2012]. Their edges (Fig. 6(e)) are crisper
than other three competitors. However, there can be discontinu-
ous edges. In the last two columns in Fig. 6, we show our results
“network output” and “voting.” The “network output” is always the
output from the PixelNet fed with the output from the (N − 2)-th
conv-block of GridNet. Our results show the sharpest edges while
preserving the local details and avoiding discontinuous edges. Note
that even the edge occupies a small portion of the final pixel, our
model can somehow “amplify” the edges in final pixel art. In the
red box of Fig. 1, our method successfully preserves the details on
the eyes of the girl while other methods cannot achieve that. Our
method also produces clearer edges than others in the blue box of
Fig. 1.
Fig. 7 shows results on real photographs. The resolution of the

input image ranges from 800×800 to 256×256. Note that real pho-
tographs usually have smooth color transition. To create more pixel-
art appearance, we color-quantize our results as well as our com-
petitors’ results to 16 colors using a k-means color reduction. Even
with such color quantization, results from our competitors remain
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(a) Input (b) Bicubic (c) Perceptual (d) Content-
adaptive

(e) Image
abstraction

(f) Ours (network
output)

(g) Ours (voting)

Fig. 6. Comparison of pixel art results. The resolution of downscaled images in (b), (c), (d), (e) & (g) are 32 × 32. (Input image ©Nintendo Co., Ltd.)

quite smooth and looks too “photorealistic.” This is due to the fact
that image downscaling methods intend to suppress the aliasing.
For our competitors’ results on the upper two rows, even with the
scaling factor of 1/8, they do not exhibit pixelized appearance due
to the high resolution of the input. On the contrary, our method
(Fig 7(f)) preserves the color-quantized appearance desired in pixel
art application. Thanks to the multi-scale training strategy and fully
convolutional architecture, our method can preserve more details
in high-resolution images while low resolution results are more
abstract. Our “voting” results are visually similar to our “network
output” counterparts.
The factor of downscaling strongly influences the quality of the

pixel arts for downscaling approaches. However, choosing an ap-
propriate downscaling factor is image-dependent. Fig. 8 compares
our method to “content-adaptive” [Kopf et al. 2013] and image ab-
straction [Gerstner et al. 2012] in two scales, 1/6 and 1/8. For the
upper example, a larger downscaling rate of 1/8 (Fig. 8(c) & (e))
produce visually better pixel arts than the smaller 1/6 (Fig. 8(b) &

(d)) for both of our competitors. On the other hand, for the lower
example, the smaller scaling factor of 1/6 performs better. This is
because different images contain different levels of details. Selecting
an appropriate downscaling factor is hence an art. In contrast, our
network does not need to specify the scaling factor and produces
visually pleasant pixel art (Fig. 8(f)). To have a fair comparison, the
last two column shows our “voting” results rendered with scaling
factor of 1/6 and 1/8, which are similar to our “network output.”

4.2 Comparison to Alternative CNN Models
We also compare our method to CycleGAN [Zhu et al. 2017], and
two variants of our CNN models including, “GridNet alone,” and
“PixelNet alone.” CycleGAN is also an unsupervised learning method
with a cycle consistency loss. It can be directly applied to our pix-
elization application. The “GridNet alone” model is actually Grid-
Net+DepixelNet with the PixelNet being dropped. The last model
“PixelNet Alone” is PixelNet + DepixelNet with the GridNet being
dropped. These two variants are used to evaluate the importance
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(a) Input (b) Subsampling (c) Perceptual (d) Content-
adaptive

(e) Image
abstraction

(f) Ours (network
output)

(g) Ours (voting)

Fig. 7. Pixel art of real photographs. Results in (f) are our “network output”, and results in (g) are our “voting” based on (f). The results of other methods from
the same row are all downscaled by the same scaling factor. The scaling factors from top to bottom are 1/8, 1/8, 1/6, and 1/6. Our results are always 1/6.
Photos from public domain.

Table 1. Different loss combinations.

Loss1: LL1 + Lmirr + LGAN
Loss2: LL1 + Lgrad + LGAN
Loss3: LL1 + Lgrad + Lmirr
Loss4: LL1 + Lgrad + Lmirr + LGAN (all w/o multi-scale)
Loss5: LL1 + Lgrad + Lmirr + LGAN (all w/ multi-scale)

of the components in our model. All three alternatives are trained
with the same training data.

Fig. 9 compares the proposed one to the three alternative mod-
els. Although CycleGAN tries to transfer the input image to pixel
art style, its results contain a lot of artifacts which come from the
gridlines in pixel art training data. For “GridNet alone” model, the
results are too realistic images and do not look like pixel arts. This
is because GridNet serves as a downscaling component while the
PixelNet serves to simulate the pixelized appearance. Dropping Pix-
elNet reduces the pixelized appearance. For the results of “PixelNet
alone” model, PixelNet does generate pixelized appearance, but fails
to preserve the fine edges and present color-quantized appearance.
This is because the network is not constrained to generate grid-
structured colors and edges, which is the main objective of GridNet.
Last column (Fig. 9(e)) shows results generated from our complete
network. Our results are visually more pleasant as it presents the
least artifacts and the clearest structure among all methods

4.3 Impact of Losses
We conduct an experiment to evaluate the impact of each loss,
especially adversarial and mirror losses. Different loss combinations
are summarized in Table 1. Same training configuration is applied
for each loss combination.
Fig. 10 shows the results of our network training with different

loss configurations. Without the gradient loss (Fig 10(b)), the colors
and edges of our results deviate from the input image. Moreover, the
results are not smooth especially at the edges which are shown in
box A. Fig 10(c) shows the result of Loss2 (the mirror loss is dropped).
The original colors are no longer retained in pixel arts (see the color
of Mario dress in Box B). In addition, without the mirror loss, we
cannot hold the reversibility of the whole network since our training
data are unpaired. That makes some uncontrollable artifacts such
as in box C. Fig 10(d) shows results of the third configuration, we
remove the GAN loss while retaining all the other losses. We can
see that the results are no longer pixelized and more similar to
the original images. This is because without the adversarial loss,
the model fails to reject results that do not look like pixel art. As
we mentioned in Section. 3.2.1, our network generates multi-scale
results to the improve the generalization and representation abilities
of ourmodel. In Loss4, we let GridNet outputs only one result instead
of three, while the whole network uses all losses. Without the multi-
scale training, we lose much more details of the image such as the
right face of the man in box D. This demonstrates the effectiveness
the multi-scale training on detail preserving and representation
ability. Boxes E and F in Fig 10(f) show the results with all losses as
well as the multi-scale training. These results preserve perceptually
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(a) Input (b) Content-
adaptive (1/6)

(c) Content-
adaptive (1/8)

(d) Image
abstraction (1/6)

(e) Image
abstraction (1/8)

(f) Ours (network
output)

(g) Ours (1/6)
(voting)

(h) Ours (1/8)
(voting)

Fig. 8. Comparisons to other methods under two scaling factors, 1/6 and 1/8. (©Nintendo Co., Ltd., and ©taskyamaura/DeviantArt.)

(a) Input (b) CycleGAN (c) “GridNet alone” (d) “PixelNet alone” (e) Complete model

Fig. 9. Comparison to alternative CNN models. All results are direct network output. (Mario ©Nintendo Co., Ltd., photo from the public domain.)

important local details without hurting the global structure. In the
same time, amplify the edges and retain some interesting effects
such as the checker board in box F.

4.4 Comparisons with Manual Pixel Arts
We also conduct an experiment (Fig. 11) to compare our results
to manual pixel arts drawn by artists. Two manual pixel arts are
drawn (Fig 11(c)). We can see that artists may modify the overall
structure and even the color to suit their own style. They also pay
less attention to the conformity to the original input. In contrast,
our results strongly conform to the input (Fig 11(b)). Our results
can retain the perceptually important elements such as eyes and the
pixelized appearance. On the other hand, our model can create new
content or style, as artists do.

4.5 Depixelization
Due to our bi-directional training design, a side effect of our method
is depixelization. With the well trained network, we can feed a pixel
art (Fig. 12(a)) to the DepixelNet, to reconstruct a smooth cartoon
image (Fig. 12(c)). Fig 12(b)&(c) compare [Kopf and Lischinski 2011]
results and ours. Our results look rougher than that of [Kopf and
Lischinski 2011] in general. Note that our output is raster image
while that of [Kopf and Lischinski 2011] is vector output. Generating
vector graphics is beyond the scope of this paper. Nevertheless, our
network can still generate visually pleasant results with clear edges
and a smooth gradient.

4.6 Performance
We implemented our network using the deep learning framework
PyTorch on Ubuntu 16.04. The whole training process took around
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(a) Input (b) Loss1 (c) Loss2 (d) Loss3 (e) Loss4 (f) Loss5 (all)
(w/o Gradient) (w/o Mirror) (w/o GAN) (w/o Multi-scale)

Fig. 10. Impact of Losses. From left to right, we show the input images and the synthesized images with various loss configurations in Table 1. (Mario
©Nintendo Co., Ltd., photos from the public domain.)

twelve hours on a single NVIDIA GeForce GTX 1080 Ti with an Intel
Core i7-8700 CPU at 3.20GHz. During the testing phase, it takes
around 0.6s to generate one pixel art on average.

4.7 Limitations
Unlike the image downscaling methods, our method is not able
to generate pixel arts with arbitrary resolution, as our pixelized
appearance is always 1/6 of the resolution of the input. Nevertheless,
a workaround is to first downsample the input image to 6x of target
pixel art resolution, before feeding to our network, as our network
can take arbitrary size image as input. However, such preprocessing
downsample scheme may remove details and/or even introduce
unwanted artifacts.
Just like other GAN-based methods, adversarial losses may in-

troduce unpredictable artifacts (Fig. 13(d)). It cannot guarantee that
the colors of output are exactly the same as the original image
(Fig. 13(b)).

5 CONCLUSION
In this paper, we propose a cascaded network for unsupervised
pixelization. Its unsupervised nature relieves the requirement for
preparing paired pixel art training data. Paired pixel art data is
practically infeasible as artists may sometimes not follow the input
as demonstrated in Fig 11. Three subnetworks are specially designed
to serve for different purposes. Mirror losses are proposed to hold the
reversibility of our network. Extensive experiments show that our

method can generate visually pleasant pixel arts and outperform the
existing image downscaling methods. The flexibility and simplicity
of our network design allow us to generate pixel art efficiently. In
the future, a natural extension is to create a temporal-consistent
pixel art sequence for a video input.
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