
��AA
AA�� .1

Halftoning with Selective
Precipitation and Adaptive
Clustering

Tien-tsin Wong
Computer Science Department
The Chinese University of Hong Kong
Shatin, Hong Kong
ttwong@cs.cuhk.hk

Siu-chi Hsu
Creature House, Ltd.
Hong Kong
schsu@acm.org

Halftoning techniques are used to display continuous tone pictures on bi-level displays

and printers (or on those with very limited number of shades). The most popular

and well-known techniques are ordered dither and error di�usion. The latter produces

aperiodic patterns with limited low frequency components, a useful property (Ulichney

1987), but its dispersed dots su�er from an excessive smudging, which is especially

objectionable on high resolution devices. Ordered dither, on the other hand, is capable

of clustering the dots produced by using a properly designed dither matrix. However,

a regular dither pattern is then clearly visible in the output picture. A comparison of

most digital halftoning techniques can be found in the literature (Schumacher 1991)

(Ulichney 1987).

Recently, researchers have been investigating new halftoning techniques which tra-

verse images along a space �lling curve (Witten and Neal 1982) (Cole 1990) (Wyvill and

McNaughton 1991) (Velho and de Miranda Gomes 1991) (Zhang and Webber 1993).

The space �lling curve halftoning is attractive because of its pleasant smooth grains in

the resultant image and the aperiodicity of the halftone pattern. Velho and de Miranda

Gomes (op. cit.) further proposed a clustered-dot space �lling curve halftoning algo-

rithm which reduces the smudging problem. However, clustering the dots na��vely would

blur the image excessively. This gem presents two improvements, selective precipitation

and adaptive clustering, to minimize the blurring phenomenon.

} Selective Precipitation }
The �rst improvement is to precipitate black dots selectively. The original clustered-dot

space �lling curve halftoning algorithm precipitates the black dots at a �xed location,

say, at the beginning of each cluster. This results in a poor approximation to the original

1
Copyright c 1993 by Academic Press, Inc.

All rights of reproduction in any form reserved.
ISBN 0-12-XXXXXX-X

2 }

b. Original Dithering Result

a. Grayscale Image Pixels

c. After Selective Precipitation

Figure 1. Halftoning (a 1-D continuous tone image) using precipitation.

b. Velho and Gomes suggestion

a. Grayscale Image Pixels

c. After Selective Precipitation

Figure 2. Halftoning using selective precipitation.

image when the original gray values in a particular cluster are not gathered around that

�xed location (Figure 1). Although Velho and de Miranda Gomes have briey suggested

that the white subregion can be centred at the pixel with the highest intensity in order

to preserve details, this may still result in a poor approximation (Figure 2).

By placing the black output dots over the area with the highest total gray value, a

better approximation can be obtained. This technique is called selective precipitation.

The number of black dots to be output in the current cluster is determined by summing

all gray values inside the cluster. This number is then used as the length of a moving

window which shifts within the halftone cluster. The objective is to �nd the position

of the moving window having the highest summed gray pixel value. The black dots are

then precipitated at that position.

In essence, spatial o�sets are applied to localize the position of maximum dot density.

This approach advances the original ARIES technique (Pryor et al. 1978) researched

extensively at Xerox (Roetling 1976). The basic algorithm is sketched below.

.1 Halftoning with Selective Precipitation and Adaptive Clustering } 3

Input

1. input[]: a one-dimensional array of continuous tone pixels on the range [0 : : :1]

presented as a one-dimensional array in the order of the space �lling traverse.

2. clustersize: the cluster size
3. clusterstart: the index of the current cluster's �rst element.

4. graysum: cumulative gray sum within the current cluster.

winlen := bgraysumc
graysum := graysum - winlen

winsum := 0

maxsum := 0

winstart := clusterstart

for i := winstart to (winstart+winlen-1) do

begin

winsum := winsum + input[i]

end

while (winstart+winlen) - clusterstart < clustersize

begin

if maxsum < winsum

begin

maxsum := winsum

rightplace := winstart

end

winsum := winsum - input[winstart] + input[winstart+winlen]

winstart := winstart + 1

end

Output

1. Black dots are produced at rightplace for winlen positions.

2. The �nal quantization error in graysum.

The time complexity of this process is clearly linear.

} Adaptive Clustering }
Another factor which causes the blurring is the rigid grouping of output black dots

(Figure 3). Here, the original gray values are grouped at opposite ends of the cluster.

Presented such data, selective precipitation can generate black dots only at the one end

having a higher total gray value. A better approximation can be obtained by dividing

the cluster into two smaller clusters and performing the selective precipitation process

in both clusters.

4 }

b. After Selective Precipitation

c. Cutting the cluster into 2 parts

a. Grayscale Image Pixels

Figure 3. Selective precipitation with adaptive clustering.

One method of locating the point of subdivision is �nding the sharp edges. Since

human eyes are more sensitive to high frequency changes, blurring phenomena on sharp

edges are more noticeable. A partitioning of clusters at sharp edges therefore preserves

sharp details. This approach is used; the improvement is called adaptive clustering.

Since the space �lling curve goes through each pixel in the image exactly once, it

e�ectively scales down the 2-D edge detection problem into a 1-D problem. It is there-

fore su�cient to employ merely a 1-D �lter along the space �lling curve in order to

detect sharp edges. That is, the curve's traverse constitutes a continuous image signal.

Applying the standard 1-D negative of the Laplacian of the Gaussian �lter (Jain 1989)

can detect these sharp edges along the chain (signal). The formula of the �lter is

exp(�x2=2�2)

�
3
p
2�

1� x

2

�
2

!
;

where � is the standard deviation and x is the input signal. A �lter kernel with a width

of seven pixels (� = 1) is su�cient.

The adaptive clustering algorithm is now outlined. Traverse the image pixels along a
chosen space �lling cover, forming a cluster whenever N (the maximum cluster size) pix-

els have been traversed or a sharp edge is encountered, whichever comes �rst. Perform

selective precipitation upon the current cluster. The pseudocode follows.

.1 Halftoning with Selective Precipitation and Adaptive Clustering } 5

Input

1. N: maximum cluster size

2. T: threshold

3. M: number of input pixels

4. input[1..M]: 1-D pixel data in preselected order

graysum := 0

clustersize := 0

clusterindex := 0

lastconvol := 0

for index := 0 to M-1 do

begin

convol := InvLaplGaussian(input, 7, index-3)

Convolve array with seven sample window

centered about current pixel.

graysum := graysum + input[index] Accumulate total gray.

clustersize := clustersize + 1 Increase current cluster.

if |convol-lastconvol| > T or clustersize > N

begin

precipitate(input, graysum, clustersize, clusterindex);

Perform selective precipitation outlined

in the previous pseudocode.

clustersize := 0 Begin next cluster.

clusterindex := index

end

lastconvol := convol

end

The sensitivity of the edge detection �lter a�ects the resulting halftone image and

may be controlled with a user-de�ned threshold T. This value can also be determined

automatically using previous techniques (Schlag 1991). A lower threshold detects ad-

ditional edges, resulting in potentially smaller clusters.

Figures 4 and 5 show the performance of the improved halftoning method. Note

the excessive blurring, seen as a loss of oor texture (Figure 4(b)) or of �ne image

detail (Figure 5(b)). This blurring phenomenon is signi�cantly reduced when selective

precipitation and adaptive clustering is employed (Figure 4(c) and 5(c), respectively).

6 }

(a)

(b) (c)

Figure 4. Teapot. (a) Original gray scale image (256x256). (b) Space filling dithering; cluster size N = 9
pixels. (c) Selective precipitation with adaptive clustering; N = 9.

.1 Halftoning with Selective Precipitation and Adaptive Clustering } 7

(a)

(b) (c)

Figure 5. F16 factory. (a) Original gray scale image (256x256). (b) Space filling dithering; cluster size
N = 9 pixels. (c) Selective precipitation with adaptive clustering; N = 9.

8 }

} C Implementation }
/*==*
* Halftoning using Space Filling Curve with adaptive clustering and *
* selective precipitation *
* *
* Limitation: *
* Only process image with size 2ˆn x 2ˆn where n is positive integer. *
==/

unsigned char **path; /* space filling curve path */
/*
* path[] is a global array storing the information to move along
* the space filling curve.
* genspacefill() is a function to generate the information in path[].
* This function is implemented based on a gem in Graphics Gems II,
* Ken Musgrave, "A Peano Curve Generation Algorithm".
* move() is a macro to move along the space filling curve using the
* the information stored in path[].
*/

#define TRUE 1
#define FALSE 0
#define BLACK 255
#define WHITE 0
#define LEFT 0
#define RIGHT 1
#define UP 2
#define DOWN 3
#define END 255
#define move(x,y) switch (path[x][y]) \

{ \
case UP: y++; break; \
case DOWN: y--; break; \
case LEFT: x--; break; \
case RIGHT:x++; break; \

}

/*
* Description of parameters:
* picture, 2D array holding the grayscale image.
* out, 2D array holding the dithered image.
* maxclustersize, Max cluster size, N.
* thresh, Edge detection threshold T.
* do_sp, Flag to switch on/off selective precipitation.
* To switch off the selective precipitation,
* set do_sp = FALSE.
* do_ac, Flag to switch on/off adaptive clustering.
* To switch off the adaptive clustering, set do_ac=FALSE
*/

void spacefilterwindow(int **picture, int **out, int maxclustersize,
int thresh, char do_sp, char do_ac)

{
char edge; /* Flag indicate sudden change detected */

.1 Halftoning with Selective Precipitation and Adaptive Clustering } 9

char ending; /* flag indicates end of space filling curve */
int accumulator; /* Accumulate gray value */
int currclustersize; /* Record size of current cluster */
int frontx, fronty; /* Pointer to the front of the cluster */
int windowx, windowy; /* Pointer to first pixel applied with filter */
int clusterx, clustery;/* Pointer to first pixel in current cluster */
int windowlen; /* Size of the moving window */
int winsum; /* Current moving window’s sum */
int maxsum; /* Maximum moving window’s sum recorded */
int rightplace; /* Position of the moving window with max sum */
int *cluster; /* An array hold the pixel of current cluster */
int last, i,j, tempx, tempy, currx, curry; /* temp variables */
long filter[7] = {-1, -5, 0, 13, 0, -5, -1}; /* 1D -ve Lap. Gauss. filter */
long convolution; /* Convolution value in this turn */
long lastconvolution; /* Convolution value in last turn */
/*
* Description of the pointer along the space filling curve.
*
* clusterx, windowx, currx, frontx,
* clustery windowy curry fronty
* | | | |
* v v v v
* +--+
* | Cluster |
* +--+
* | |
* | |
* | /\ |
* | / \ |
* |___ / \ ___|
* | \/ \/ |
* -ve Laplacian of Gaussian Filter
*/

if ((cluster=malloc(sizeof(int)*maxclustersize))==NULL)
{
fprintf(stderr,"not enough memory for cluster\n");
return;

}
genspacefill(); /* generates the spacefilling path */

convolution=0;
currclustersize=0;
accumulator=0;
for (frontx=0, fronty=0, i=0 ; i<7 ; i++)
{
if (i<3)
{

cluster[currclustersize] = picture[frontx][fronty];
accumulator += cluster[currclustersize];
currclustersize++;

}
if (i==3)

10 }

{ currx = frontx; curry = fronty; }
convolution += filter[i]*(long)(picture[frontx][fronty]);
move(frontx,fronty); /* assume the image at least has 7 pixels */

}
lastconvolution = convolution;
clusterx=0; clustery=0;
windowx=0; windowy=0;
edge=FALSE;
ending=FALSE;

while (TRUE)
{
if (do_ac) /* switch on/off adaptive clustering */
{

/* do convolution */
convolution = 0;
for (tempx=windowx, tempy=windowy, i=0 ; i<7 ; i++)
{
convolution += filter[i]*picture[tempx][tempy];
move(tempx,tempy);

}

/* detect sudden change */
if ((convolution >= 0 && lastconvolution <=0

&& abs(convolution-lastconvolution)>thresh)
||(convolution <= 0 && lastconvolution >=0

&& abs(convolution-lastconvolution)>thresh))
edge=TRUE; /* force output dots */

}

/* Output dots if necessary */
if (edge || currclustersize >= maxclustersize || ending)
{
edge=FALSE;

/* Search the best position within cluster to precipitate */
rightplace = 0;
if (do_sp) /* switch on/off selective precipitation */
{
windowlen = accumulator/BLACK;
winsum = 0;
for (i=0; i<windowlen; i++)

winsum += cluster[i];
for (maxsum=winsum, last=0; i<currclustersize; i++, last++)
{

winsum+= cluster[i] - cluster[last];
if (winsum > maxsum)
{

rightplace=last+1;
maxsum=winsum;

}
}

}

.1 Halftoning with Selective Precipitation and Adaptive Clustering } 11

/* Output dots */
for (i=0 ; currclustersize!=0 ; currclustersize--, i++)
{
if (accumulator>=BLACK && i>=rightplace) /* precipitates */
{

out[clusterx][clustery]=BLACK;
accumulator-=BLACK;

}
else

out[clusterx][clustery]=WHITE;
move(clusterx,clustery)

} /* for */

if (ending)
break;

} /* if */

cluster[currclustersize] = picture[currx][curry];
accumulator += cluster[currclustersize];
currclustersize++;
if (path[currx][curry]==END)
ending = TRUE;

move(currx,curry);
move(windowx,windowy);
move(frontx,fronty);

} /* while */
}

} Bibliography }
(Cole 1990) A. J. Cole. Na��ve halftoning. In T. S. Chua and Kunii, editors, Proceedings

of CG International '90, pages 203{222. Springer-Verlag, 1990.

(Jain 1989) Anil K. Jain. Fundamentals of Digital Image Processing. Prentice Hall,

1989.

(Pryor et al. 1978) R. W. Pryor, G. M. Cinque, and A. Rubenstein. Bi-level displays:

A new approach. Proc. Soc. Info. Disp. (SID), 19:127{131, 1978.

(Roetling 1976) Paul J. Roetling. Halftone method with edge enhancement and moir�e

suppression. Jour. Opt. Sco. Amer., 66(10):985{989, October 1976.

(Schlag 1991) John Schlag. Noise thresholding in edge images. In James Arvo, editor,

Graphics Gems II, page 105. Academic Press, 1991.

(Schumacher 1991) Dale A. Schumacher. A comparsion of digial halftoning techniques.

In James Arvo, editor, Graphics Gems II, pages 57{77. Academic Press, 1991.

12 }

(Ulichney 1987) R. Ulichney. Digital Halftoning. MIT Press, 1987.

(Velho and de Miranda Gomes 1991) Luiz Velho and Jonas de Miranda Gomes. Digital

halftoning with space �lling curves. In Thomas W. Sederberg, editor, Computer

Graphics (SIGGRAPH '91 Proceedings), volume 25, pages 81{90, July 1991.

(Witten and Neal 1982) I. H. Witten and R. M. Neal. Using Peano curves for bilevel

display of continuous-tone images. IEEE Computer Graphics and Applications,

2:47{52, may 1982.

(Wyvill and McNaughton 1991) Geo� Wyvill and Craig McNaughton. Three plus �ve

makes eight: A simpli�ed approach to halftoning. In N. M. Patrikalakis, editor,

Scienti�c Visualization of Physical Phenomena (Proceedings of CG International

'91), pages 379{392. Springer-Verlag, 1991.

(Zhang and Webber 1993) Yuefeng Zhang and Robert E. Webber. Space di�usion: An

improved parallel halftoning technique using space-�lling curves. In James T.

Kajiya, editor, Computer Graphics (SIGGRAPH '93 Proceedings), volume 27,

pages 305{312, August 1993.

