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Figure 1: Given still pictures of animal groups, we can infer the motion of animals and perform realistic animations, such as (a) the animated
motion of a bird and (b) the animated motion of an elephant. In (b), we also superimpose the adjacent frames to illustrate the motion.

Abstract
Even though the temporal information is lost, a still picture of mov-
ing animals hints at their motion. In this paper, we infer motion cy-
cle of animals from the “motion snapshots” (snapshots of different
individuals) captured in a still picture. By finding the motion path
in the graph connecting motion snapshots, we can infer the order of
motion snapshots with respect to time, and hence the motion cycle.
Both “half-cycle” and “full-cycle” motions can be inferred in a uni-
fied manner. Therefore, we can animate a still picture of a moving
animal group by morphing among the ordered snapshots. By re-
fining the pose, morphology, and appearance consistencies, smooth
and realistic animal motion can be synthesized. Our results demon-
strate the applicability of the proposed method to a wide range of
species, including birds, fishes, mammals, and reptiles.

Keywords: still picture, animal group, motion cycle, motion in-
ference, consistency refinement

1 Introduction
Animal groups are ubiquitous in nature. Considering a picture of
moving animals of the same species (e.g. Figures 1(a) & (b)), it is
not difficult to observe that in one single picture, the animal motion
can be encoded in different individuals, due to the motion asyn-
chronism of different individuals in the group. Although individu-
als may vary morphologically, their motion snapshots suggest how
this species moves. This observation motivates us to deduce and
synthesize the motion of an animal group from a still picture, by
ordering and morphing the motion snapshots captured in one sin-
gle picture. To the best of our knowledge, the proposed work is the
first attempt to animate a still picture of moving animals.

Previous work on animating a still picture includes physically

simulating natural phenomena [Shinya et al. 1999][Chuang et al.
2005], navigating inside the picture by reconstructing scene geom-
etry [Horry et al. 1997][Criminisi et al. 2000][Oh et al. 2001], and
deforming static object using shape deformation [Litwinowicz and
Williams 1994][Barrett and Cheney 2002] [Igarashi et al. 2005].
However, animating the motion by physical modeling and/or ge-
ometry reconstruction may require a lot of user intervention. Un-
like the previous methods, we propose an image-based approach
which is simpler and does not rely on any physical modeling or re-
construction, as the motion snapshots are already embedded in the
picture. The same framework allows us to animate a wide variety
of species, from birds to mammals.

The framework of our system (Figure 2) starts by extracting the
individuals, or equivalently the motion snapshots, in a single pic-
ture. These snapshots form the “key frames” of the motion cy-
cle. However, they are disordered initially. Our key contribution is
an optimization that determines the optimal ordering of snapshots
in order to reconstruct the motion cycle (Section 3). To achieve
this, we first construct a snapshot graph based on the snapshots ex-
tracted. Then, an objective function, which maximizes the overall
shape distinction of all snapshots and minimizes the shape differ-
ence between adjacent snapshots, is used to determine the motion
path in the graph (corresponds to the motion cycle). To alleviate the
pose, morphology, and appearance variation of snapshots along the
motion path, we further propose to perform consistency refinement
(Section 4). Finally, a smooth motion sequence can be synthesized
by morphing among the ordered snapshots (Figure 1). However,
certain information, such as motion trajectory and speed, is unavail-
able from the still (Section 5). Hence, we require the user to draw
the motion trajectory for each individual in the picture. The tim-
ing of the motion is also provided via a user interface in order to
produce realistic motion.

2 Related Work

Animating from a single picture or a sparse set of pictures remains
an interesting and challenging problem in computer graphics. Since
a still picture lacks the motion information, researchers attempted to
introduce prior knowledge to achieve the physical realism. Shinya
et al. [1999] employed physically based techniques and image mor-
phing to create 2D animation of plants in an input image. Chuang
et al. [2005] simulated natural phenomena relying on physical mod-
els. They mainly handled the images containing passive elements
with the motion driven by wind, like water, trees, and boats.



Source Image

Snapshot Extraction

Motion Inference

Consistency
Refinement

Pose Consistency

Morphological
Consistency

Appearance
Consistency

Rendering

Figure 2: An overview of our system.

Researchers also carried out studies on navigating into the 2D im-
ages via scene reconstruction. Horry et al. [1997] let users ex-
plore the image in 3D by first obtaining a mesh-based scene model.
Their system requires the interactive selection of camera position
and vanishing points. Criminisi et al. [2000] computed 3D affine
measurements from a single perspective view of a scene. They
mainly handled scenes containing planes and parallel lines. Oh et
al. [2001] represented a scene as a layered collection of depth im-
ages, and developed the editing operations for modifying the shape,
color and illumination of the objects.

Other than the physical realism, techniques have been developed to
efficiently manipulate the image objects via user control. Litwinow-
icz and Williams [1994] applied image deformation to create 2D
animation based on the key-frame skeletons provided by the user.
Ngo et al. [2000] embedded free-form constraints into a graphical
model so that users can easily manipulate the rendered image. Bar-
rett and Cheney [2002] triangulated a manually selected object, and
then allowed the user to perform interactive editing, such as scaling,
stretching, bending, and deleting. Igarashi et al. [2005] presented
an interactive system that deforms a 2D shape by moving several
vertices as constrained handles. Their work was further improved
by Schaefer et al. [2006] to create fast deformation.

Our approach does not rely on physical modeling or geometry re-
construction to simulate complex animal motions. Instead, we
make use of the motion snapshots embedded in the image, and order
them to synthesize a realistic motion sequence. For motion infer-
ence, our work is somewhat related to video texture [Schödl et al.
2000][Soatto et al. 2001][Wang and Zhu 2003], which models the
stochastic motion from a video sequence, and the work of [Lin et al.
2007] which synthesizes the partial temporal order of the dynamic
motion from a sparse set of images. While Lin et al.’s focus is on
natural phenomena, such as water, wind and fire, we emphasize
living creatures that exhibit essentially highly regular and periodic
motions. In addition, Schindler et al. [2007] inferred the temporal
ordering of a collection of images by estimating the 3D structures.

3 Motion Inference
Unlike some natural phenomena such as water and wind, which are
stochastically stationary [Chetverikov and Fazekas 2006], animal
motion is highly regular and repetitive. Assuming that the input
picture contains sufficient snapshots (each corresponds to one in-
dividual), we recover the motion cycle by inferring the order of
these snapshots with respect to time. To achieve this, we first inter-
actively extract the snapshots using GrabCut [Rother et al. 2004],
which provides alpha-matte for each snapshot as well. Occluded
individuals are simply discarded. Then, we construct a snapshot
graph using a shape similarity metric. Inferring the motion cycle
is further formulated as determining the optimal path in the graph,
based on an objective function.

3.1 Building Snapshot Graph
The snapshot graph is a complete graph, in which each node repre-
sents a snapshot, and the weight of the edge connecting two nodes is
the similarity measured between the two corresponding snapshots.
An example is shown in Figure 7(a).

The similarity between two snapshots are measured using shape
features. The shape of snapshot is represented by a set of discrete
points uniformly sampled on the shape contour (Figure 3(b)). We
call these points the contour points. Then we employ the shape
context [Belongie et al. 2002][Mori et al. 2005], a commonly used
shape descriptor, to quantify the shape features. This descriptor
is invariant to translation, scaling, rotation, and even robust under
small geometrical distortion, occlusion and outliers. For each con-
tour point, shape context describes the distribution of the relative
positions of all the other points in a spatial histogram. As shown
in Figure 3(c), we construct bins that are uniformly distributed in
log-polar space, and the number of contour points falling into each
bin is one corresponding component in the resulting shape feature
vector. The feature vectors of all coutour points are then combined
together to describe the shape.

(a) (b) (c)

Figure 3: Shape feature extraction. (a) a snapshot image, (b) the
sampled contour points, and (c) the shape context using the log-
polar histogram to compute the distribution of the relative positions
of all the other contour points to the reference point.

The shape similarity between two snapshots Sk and Sl is further
measured by considering the distances from Sk to Sl and from Sl

to Sk, respectively [Belongie et al. 2002]. This symmetric mea-
surement is more stable. The formulation is given by

D(Sk, Sl) =
1

Mk

∑

i∈Mk

||fi − hj∗ || +
1

Ml

∑

j∈Ml

||fi∗ − hj ||, (1)

where Mk (Ml) is the total number of contour points of Sk (Sl); fi
(hj) is the shape context feature vector for the i-th (j-th) contour
point on Sk (Sl). The j∗-th contour point on Sl corresponds to the
i-th contour point on Sk, where j∗ = argminj ||fi − hj ||. Simi-
larly, i∗ = argmini||fi − hj ||. This metric is simple but accurate.
Figure 4 shows the query result on snapshot shape using this met-
ric. Obviously, small topological shape changes can be successfully
handled.

The above shape similarity metric, however, may find semantically
incorrect corresponding points due to the self-occlusion of limbs
for some animals as viewed from certain viewpoints. For instance,
the elephant snapshots in Figures 5(a) & (c) have very similar sil-
houettes, but in fact the left and right legs are interchanged. Hence,
the contour point i in Figure 5(b) may be incorrectly associated
with the contour point j∗1 in Figure 5(d) rather than the semanti-
cally correct contour point j∗2 . This problem could be potentially
solved by using the technique of human body tracking and recon-
struction from single camera [Sminchisescu 2006] [Agarwal and
Triggs 2005][Agarwal 2006]. However, most existing techniques
adopt learning-based strategies that require a large training set, and
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Figure 4: Shortlists of snapshot query. The first column shows the
query snapshots, and the rest columns show the closest snapshots
with decreasing shape similarity from left to right.
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Figure 5: Handling self-occlusion. (a) snapshot 1 and (c) snapshot
4 have very similar shape contours. The contour point i in snap-
shot 1 may be incorrectly associated with the point j∗

1 in snapshot
4. To handle this problem, we manually draw auxiliary contours
(in dashed lines) to eliminate the ambiguity, and color-code all the
contours to indicate which two legs are on the same side. Finally
the corresponding point j∗2 can be located correctly.

the 3D poses they used are even from motion capture. Thus, their
works are not applicable in our case. In order to tackle this prob-
lem, we introduce auxiliary contours to eliminate the ambiguity on
shape contour. Auxiliary contours are assigned interactively by user
in the occluded regions, for example, the dashed lines on the bound-
aries of the elephant legs (Figures 5(b) & (d)). We also color-code
the contours to provide the correspondence. Here, we use red and
green colors to label legs on different sides. When computing shape
distance, we match the points only on the contours with the same
color. In this way, we can avoid the shape ambiguity. Note that
such auxiliary contours are not always needed. In all our examples,
only the elephant example requires this treatment.

3.2 Reconstruction of Motion Cycle

The question now is on how to reconstruct the motion cycle with
the snapshot graph. Recall the basic assumption that the input pic-
ture contains sufficient number of snapshots to form the motion cy-
cle. Intuitively, we want the reconstructed motion cycle to cover
distinct motion states and represent smooth movement. There is
no need to make use of all snapshots to form the motion cycle, as
some snapshots are too similar to be useful and some are outliers.
Instead, we find an optimal path in the snapshot graph, which we
call the motion path, that corresponds to the motion cycle. To ap-
proximate smooth and natural motion, the adjacent snapshots on the
motion path should be close in shape. To cover the important mo-
tion states, the snapshots on the motion path should be as distinct
as possible. Ideally, the snapshots are uniformly sampled from the
motion cycle. These requirements lead to our objective for optimiz-
ing three factors: local similarity, global distinction, and sampling
uniformity.

If we denote the total number of snapshots as N , the motion path
of snapshots as an ordered set I = {Ii}, where Ii is a node (or
snapshot), and the path length (the number of nodes) as L ≤ N ,

then the local similarity is defined as the mean of all shape distances
between adjacent nodes on the path:

Cs = α · E({D(Ii, Ii+1)}), (2)

where D(Ii, Ii+1) is evaluated by Equation 1, and E(·) com-
putes the mean value. The normalization factor α is set to be
max(D(Sk, Sl)), the maximum distance between two snapshots
in the graph. Sampling uniformity is measured by the variance of
the shape distances between any two adjacent nodes on the path,
and is given by

Cu = Var({D(Ii, Ii+1)}), (3)

where Var(·) evaluates the variance. Finally, global distinction is
measured by the mean of the distances between any two nodes on
the path, which is formulated as

Cd = α ·

∑
i

∑
j,j 6=i

D(Ii, Ij)

L · (L − 1)
. (4)

Based on the above three terms, the motion path I is found by min-
imizing the following energy function:

C(I) = Cs + λ1Cu + λ2(1 − Cd). (5)

The coefficients are empirically set as λ1 = 2.5 and λ2 = 0.5. We
solve this discrete optimization problem using simulated annealing
on the graph, and the path length L is automatically determined
during the optimization process (refer to Appendix A). Note that
although we employ the simulated annealing here, other discrete
optimization techniques, such as some ML techniques, may also be
applicable.

(a) (b)

Figure 6: Two types of motions: (a) half-cycle motion and (b) full-
cycle motion. In half-cycle motion, the motions of the two half
cycles are mirrored, while in full-cycle motion, all the states are
completely distinct.

Conceptually, we can classify animal motion into two types: full-
cycle motion and half-cycle motion. Full-cycle motion contains
completely distinct states in the cycle. The walking of mammals
usually belongs to this type. For example, in elephant motion (Fig-
ure 6(b)), one pair of diagonal legs moves first in the upper half
cycle (from the left to the right green nodes), while another pair
of legs moves in the lower half cycle. In contrast, if the motions
of two half cycles are mirrored to each other, we call this type of
motion the half-cycle motion. One typical example is the flapping
of birds (Figure 6(a)), where the motion of up-swing half cycle is
mirrored to the motion of down-swing half cycle. So it is obvious
that a full-cycle motion corresponds to a closed path in the graph
while the half-cycle motion corresponds to an open path.

To determine the motion path, we first automatically determine the
two extremal nodes (the green nodes in Figure 6) by finding two
nodes with maximal shape distance. For half-cycle motion, the ex-
tremal nodes are used as the start and end nodes of the motion path
in the snapshot graph. For full-cycle motion, we further constrain
that the motion path should pass through the two extremal nodes.
Figure 7(a) shows the motion path (the solid black line segments)
of seabirds in Figure 11(a). Note that some outlier snapshots, which
are substantially different from others, may exist and be selected in-
appropriately as the extremal nodes. To remove the outliers, we as-
sume that the outlier snapshots should not dominate the set of snap-
shots, and that the distances between snapshots conform to a Gaus-
sian distribution, N(µ, σ2). When the minimal distance from one
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Figure 7: (a) Given the snapshot graph, we search the motion path
(the solid black line segments). Node 5 is detected as an outlier. We
also connect the rest of the nodes (in blue) to the motion path for
later animation by constructing a spanning tree. (b) Anchoring the
walking elephant. For frame 58, two diagonal feet are linked with
red and green lines. The anchor point is indicated by the blue dot.

snapshot to the other snapshots exceeds the threshold δ = µ+ c ·σ,
this snapshot is removed as an outlier (e.g., the dark gray node in
Figure 7(a)). Empirically, we set c = 2.0.

It seems that the reconstruction of motion cycle can be solved by
taking the shortest path between two extremal nodes. However,
finding shortest path only guarantees the smoothness of recovered
motion, but will not guarantee sufficient distinction among different
snapshots. Hence, some important snapshots may be missed dur-
ing the motion path reconstruction. Another potential solution is
the dimension reduction technique in which the multi-dimensional
shape feature vectors are projected onto 1D space for determining
the cycle. However, even small errors in the reduction may yield
significant errors in the ordering of snapshots. We have tested both
the shortest path and dimension reduction approaches, but both give
unsatisfactory reconstruction results.

4 Consistency Refinement
As the snapshots are actually different individuals, morphing di-
rectly among them may yield unnatural and inconsistent animation
results. To allow smooth transition among ordered snapshots, we
refine three kinds of consistencies: pose consistency, morphology
consistency, and appearance consistency. For the animated illus-
tration of the consistency issue, readers are kindly referred to the
supplementary video.

4.1 Pose Consistency

Since the individuals are captured in different poses relative to the
camera, we first “normalize” them so that they share the same scale
and orientation. Although the shape descriptor in previous step is
scale, rotation, and translation invariant, the snapshots are not yet
normalized. Without loss of generality, the first snapshot in the
ordered sequence is used as the reference for normalization. In our
image-based system, the normalization can be done by estimating
2D affine transformations between snapshot poses.

To achieve this, we first establish the correspondence between the
contour points on every two adjacent snapshots by shape match-
ing [Belongie et al. 2002]. Then, for each contour point q1 on the
first snapshot, its corresponding point qk on the k-th snapshot can
be located according to the correspondence determined from shape
matching. The affine transformation T1,k between the first and the
k-th snapshot can be solved from the corresponding points using
least square.

Due to the non-rigid shape deformation of the captured snapshots,
we cannot simply use all the contour points for estimating the affine
transformation. Instead, we only utilize the contour points that are
relatively stable (less deformed during the motion) for estimation,
e.g., the contour points on the head and the tail of bird, or the con-

Snapshot 1 Snapshot 9 Snapshot 11 Snapshot 7

(a) partial motion sequence

(b) with pose normalization

(c) with morphological regression

(d) with appearance adjustment

Figure 8: Consistency refinement. (a) shows the first 4 snapshots
of the ordered sequence. (b) The snapshot poses are normalized in
scale and orientation. (c) Morphology consistency in the sequence
is further refined. Note that the perturbation (drawn in the blue line)
becomes more smooth after regression. (d) Color variation is also
suppressed in the appearance consistency refinement.

tour points on the head and the back of elephant. To identify those
points, users can interactively circle on the first snapshot and obtain
a set of stable contour points Q1. Then, our system automatically
identifies the corresponding stable contour points Qk on the k-th
snapshot via the correspondence from shape matching. The affine
transformation T1,k is then solved from these corresponding stable
contour points. After the estimation, snapshots are “normalized” in
terms of pose by applying the affine transformations (Figure 8(b)).

4.2 Morphology Consistency

Even after pose normalization, the snapshots may still suffer from
local shape inconsistency due to the morphological difference of
individuals. Morphing among them may lead to unnatural temporal
perturbation as depicted by the bumpy blue line in Figure 8(b). To
solve this problem, we apply a regression process on the trajectory
of the corresponding contour points to smoothen out the perturba-
tion. Here, we assume that such trajectory conform to a B-spline
curve, which is parameterized by

P (t) =

m∑

j=1

P̃jbj,s(t), t ∈ [0, 1], (6)

where m is the number of control points P̃j , and bj,s(t) is the j-th
B-spline basis function with order s. Specifically, we use one piece
of uniform cubic B-spline, and set m = min(15, n/2), where n
is the number of snapshots in the ordered sequence. The B-spline
regression can then be formulated as a least square minimization
problem:

min

n∑

i=1

‖P (ti) − P̂i‖
2

, (7)

where P̂i is the contour point on the i-th snapshot in the ordered
sequence, and ti ∈ [0, 1] is the B-spline parameter value set to the
i-th snapshot. To ensure a consistent temporal order of regression,
the parameter values ti should be monotonic increasing (ti < ti+1)
with respect to the snapshot order in the sequence. In addition,
the differences in value are proportional to the corresponding shape
distances, i.e., ti+1 − ti ∝ D(Ii, Ii+1).

The minimization returns optimal control points P̃j of the B-spline
curve. However, when there are outlier contour points on the tra-
jectory, the B-spline approximation may be erroneous. Hence, iter-
ative re-weighted least square (IRLS) is used for estimation, which



is robust to outliers and does not over-suppress the trajectory. With
the estimated B-spline curve, we replace P̂i with P (ti). This en-
sures a smooth transition among snapshots with consistent order
(depicted as the blue line in Figure 8(c)). The same regression is
applied to all the contour points. Equivalently, we can regard P̂i as
a high dimensional vector containing elements of 2D coordinates
of all the contour points during the regression. Although we may
use convolution methods to suppress the perturbation, they are not
able to remove outliers while maintaining a reasonable trajectory.

So far, we only smoothen the trajectories of contour points on the
shape boundary. To smoothly adjust the interior points within the
shapes, we apply thin-plate spline (TPS) mapping on each shape
according to the correspondence between P̂i and P (ti) (refer to
Appendix B). Figure 9 superimposes the snapshots to compare the
results with and without such B-spline based regression in (b) and
(a), respectively. The original bumpy trajectory is now smoothed
after the regression.

(a) without regression (b) with regression

Figure 9: Morphology consistency. (a) shows the superimposed
snapshots without regression. The trajectory of contour points (con-
nected with blue line) is bumpy. (b) shows the resulting snapshots
with the shape regression. Note that the trajectory is now smoothed.

4.3 Appearance Consistency

The snapshots are now consistent in terms of pose and morphology,
but their appearance (color and texture) may still be inconsistent
from each other due to the difference of individuality. In order to
solve this, we select the first snapshot as the reference and “trans-
fer” the appearance of the reference to all the other snapshots, ig-
noring the illumination.

Transferring the appearance of the entire body of a snapshot to the
others may be erroneous because of the self-occlusion caused by
deformation during motion. In order to obtain visually consistent
appearance, we first manually mark on the reference snapshot the
region that is inconsistent in appearance, denoted as R1 (enclosed
by the green curve in Figure 10). From observation, the region usu-
ally occurs at places with small deformation, and hence less chance
of being occluded. Therefore, we can warp the region R1 in the
reference snapshot to the region Rk in the k-th snapshot using TPS
mapping. The mapping is determined by the corresponding contour
points of the two snapshots. Finally, the region Rk (enclosed by the
orange curve) is replaced with the warped R1. The seam on the
boundary of replaced region is alleviated by feathering technique.
Note that the marked region R1 is allowed to contain multiple dis-
joint sub-regions.

5 Results and Discussions
Once motion inference and consistency refinement are done, we can
then animate the motion. Here we first demonstrate the applicabil-
ity of our method on species with substantially different motions.
Next, we illustrate how to animate the still images showing differ-
ent groups of animals. Readers are referred to the supplementary
video for a better animated presentation.

Rendering To render the animation starting from a still picture,
motion trajectory should be first specified by the user for each indi-
vidual. Then, the animation of each individual is synthesized by ap-
plying TPS morphing among all the consistency-refined snapshots.

Snapshot 1 Snapshot 9 Snapshot 11
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Figure 10: Appearance consistency. The appearance-inconsistent
region (enclosed by the green curve) is first manually selected in the
reference snapshot. Then the selected region is warped to replace
the corresponding region in other snapshots (enclosed by the orange
curve).

The TPS morphing is implemented on GPU to reach interactive
rate. The final animated sequence is created by blending the anima-
tion of each individual with a background image or a video. Motion
blur effect is also added in the final animation using the technique
of [Brostow and Essa 2001]. In addition, users can further control
the animation, such as changing the speed of the motion, adjusting
the scale and the orientation of each individual during the motion,
in order to refine the animation.

However, certain motion may need additional treatment, for exam-
ple, the motion of walking, like that of an elephant or a dog. There
should be one more constraint applied. Their feet touching on the
ground must be anchored on the ground during the motion. Other-
wise, odd drifting artifact may occur. Hence, we need to determine
the anchor feet for each rendered frame. In the example of elephant
in Figure 7(b), we first compute the distance between two diagonal
feet, as denoted by Dr (the red line) and Dg (the green line), re-
spectively. Then, for every two adjacent frames k and k + 1, we
compute the changes of Dr and Dg . The diagonal feet with less
change are identified in frame k. Then the tip of the back foot (blue
dot) of the identified diagonal feet is chosen to anchor the rendered
animal in the frame.

Motions of Different Species To verify the effectiveness of our
motion inference on different species, we show the inferred motion
of birds (Figure 1(a) and Figure 11(d)), elephants (Figure 1(b)),
loaches (Figure 11(e)), and tortoises (Figure 11(f)). The motions of
birds and loaches are half-cycle while the motions of elephants and
tortoises are full-cycle.

Given the input picture of a flock of birds in Figure 1(a), we ex-
tract 30 snapshots in total, in which 13 snapshots are used in the
reconstructed half-cycle motion. A full motion cycle after mor-
phing among the ordered snapshots is shown on the left side of
Figure 1(a). Another example of a flock of birds is shown in Fig-
ure 11(a), where 7 out of 11 snapshots are selected to form the half-
cycle motion. The swimming motion of loaches (Figure 11(b)) is
represented by 9 ordered snapshots. The reconstructed motions for
these two examples are demonstrated in Figures 11 (d) and (e), re-
spectively. The input picture of elephant example contains 7 valid
snapshots, and 6 out of them are selected to form the full cycle of
the motion (Figure 1(b)).

Our method also allows the user to take multiple still pictures of the
same species as input pictures, so as to provide sufficient snapshots.
The major criterion is that individuals from different pictures are
taken with similar viewing perspectives. Figure 11(c) shows the
three input pictures for inferring the motion of tortoises.

Timing Statistics The proposed system was implemented on a
PC equipped with Xeon(TM) CPU 3.73GHz, 3GB system memory,
and nVidia Geforce 8800 GTX GPU with 768 MB video memory.



(a) a flock of seabirds (b) a shoal of loaches

(d) animated motion of seabirds

(e) animated motion of loaches

(c) input pictures of tortoises

(f) animated motion of tortoises

Figure 11: The animated motions from a single or multiple pictures.

Table 1 summarizes the timing statistics of all the examples used in
this paper. The processing times for different parts of our system,
including the approximate time for user interaction, are listed in
different columns in the table. From the table, we can see that the
whole processing time can be split into two parts: the time with user
interaction involved, and the time for fully automatic processing.

The total time for user interaction (column 7 in Table 1) is not
more than 6 minutes for all our examples. Note that the most
time-consuming user interaction is the semi-automatic extraction of
snapshots. The time for circling the stable contour points and mark-
ing the appearance inconsistent regions is usually small as they are
only required on the first snapshot. Auxiliary contours are only
needed for the example of elephants.

On the other hand, the total time for automatic processing is much
smaller. The motion inference is efficient and requires only 7 to
35 seconds, even though we adopted simulated annealing. The col-
umn “rendering” only shows the processing time for synthesizing
one single individual in a single frame, and the total time for render-
ing the whole animation sequence depends on both the number of
frames and the number of individuals used in the final animation.
The fast rendering is achieved via a GPU implementation of TPS
mapping.

Animating from Still Finally, we show an application of animat-
ing a group of animals starting from their initial poses and positions
in the input still picture. To achieve this, we first complete the back-
ground after snapshot extraction, using example-based inpainting
algorithm [Criminisi et al. 2003]. Then, we create a motion se-
quence for each individual based on the snapshot graph. Recall that
not all the snapshots are selected in the motion path. Thus, the snap-

(a)

(b)

Figure 12: Animating from initial poses of individuals. (a) the span-
ning tree of half-cycle motion and (b) the spanning tree of full-cycle
motion. The left column shows when the node of individual is on
the motion path (solid gray node). The right column is the case
when node of individuals are not on the motion path (hollow gray
node).

shots that are not in the motion path cannot be animated directly. In
order to create a motion sequence starting from these snapshots,
we need to construct a spanning tree (Figure 7(a)) in the snapshot
graph.

The spanning tree is constructed beginning with the motion path.
Then, the entire spanning tree is constructed iteratively by selecting
the node in the remaining node set (blue dots) with the minimal
distance to its nearest node in the current spanning tree. As shown
in Figure 7(a), the red nodes are on the motion path and the blue
nodes are selected iteratively to form the spanning tree.

Based on the spanning tree, animation can be created for each in-
dividual. For half-cycle motion, if the individual is on the motion
path (the solid black line segments in Figure 12), we traverse the
path back and forth between the two extremal nodes to generate the
motion sequence. If the individual is not on the motion path, we
first find the shortest path from the initial node (the individual) to
the motion path in the spanning tree. Then we traverse along the
shortest path to the motion path. Finally we keep traversing back
and forth again on the motion path to generate the motion sequence.
The two cases are illustrated in Figure 12(a). Full-cycle motion can
be achieved similarly, except that the motion path is already a loop
(Figure 12(b)).

Once the motion sequence is obtained from the snapshot graph, we
perform consistency refinement and TPS morphing to generate the
final animation. Figure 13 shows a few frames of animating animals
from the input still pictures.

Limitations In our system, all the motion snapshots must be cap-
tured in similar viewing perspectives, and there must be sufficient
snapshots to cover the important states of the motion cycle. Due to
the loss of temporal information and the lack of prior knowledge,
the system relies on users to tell whether the animal motion is in
half-cycle or full-cycle. In addition, since we use the image-based
approach, the current appearance consistency refinement may not
be physically correct. Nevertheless, even with these limitations, vi-
sually plausible results are obtained.

6 Conclusion
In this paper, we animate a still picture of an animal group. Based
on the observation that the motion snapshots of the same species
can be captured in a still picture, we propose to infer the motion cy-
cle of the animals from the disordered snapshots. The inference is
formulated as finding an optimal path in the snapshot graph. To
avoid inconsistencies during the animation, we ensure the pose,
morphology, and appearance consistencies. Although we do not
use a physical model, convincing animal motions are obtained as
demonstrated by the animation results of species with substantially



Figure 13: Animation from the still pictures in Figure 1.

User Interaction Automatic
Total snapshots

/snapshots in cycle

/snapshot resolution

Snapshots

extraction

(A)

Drawing
auxiliary

contours
(B)

Circling
stable

contour points
(C)

Marking
appearance

inconsistent regions
(D)

Total time

of user intervention

(A)+(B)+(C)+(D)

Motion

inference

Consistency

refinement

Rendering

(single morphed

snapshot)

Bird1 (Fig. 1(a)) 30 / 13 / 174×174 ~5mins ~30s ~30s ~6mins 35s 17s 0.024s

Bird2 (Fig. 11(a)) 11 / 7 / 175×175 ~2mins ~30s ~30s ~3mins 7s 5s 0.016s

Loach (Fig. 11(b)) 15 / 9 / 500×500 ~3mins ~30s ~30s ~4mins 13s 158s 0.76s

Tortoise (Fig. 11(c)) 10 / 9 / 500×500 ~2mins ~30s ~30s ~3mins 13s 108s 0.78s

Elephant (Fig. 1(b)) 7 / 6 / 290×290 ~2mins ~2mins ~30s ~30s ~5mins 13s 24s 0.31s

Table 1: Timing statistics for all the examples used in this paper. In the second column, the “total snapshots” refers to the number of snapshots
extracted from the input picture. The “snapshots in cycle” refers to the number of snapshots selected for reconstructing the motion cycle.

different motion behaviors.

An automatic method for handling self-occlusion problem is worth
further investigation. The appearance transfer from one individual
to another should also be investigated in the future to improve its
robustness. In addition, inference on non-cyclic motion may also
be worthwhile for further study.

Appendix A: Motion Cycle Optimization

Algorithm 1 presents the pseudo-code of motion-path optimiza-
tion. The motion path contains at least two extremal nodes in snap-
shot graph. During each iteration, we randomly generate a new
path in the graph, which is associated with a valid path length L.
Based on the energy function (Equation 5), the new path is ac-
cepted or rejected according to an annealing strategy [Pepper et al.
2002]. To guarantee a stable convergence, a certain number of it-
erations (K) is set at temperature T before the next annealing pro-
cess. In our implementation, we set T0 = 50, 000, K = 500,
AnnealFactor = 0.992, and limit = 0.01. It takes less than 35
seconds to search the motion path even for the bird example with
30 snapshots (Figure 1(a)).

Appendix B: TPS Mapping

Thin-plate spline (TPS) mapping [Bookstein 1989] is the modeling
of deformation of biological shape change. Due to the energy min-
imization property, TPS introduces less distortion and hence offers
high visual quality in image warping. When TPS is applied to im-
age warping, n pairs of corresponding control points between the
source image ({(xi, yi)}) and the warped image {(x′

i, y
′
i)} should

be first specified. Then, the TPS mapping is defined as follows,

x′ = fx(x, y) = a1 +axx+ayy+

n∑

i=1

αiφ(||(xi, yi) − (x, y)||),

(8)

y′ = fy(x, y) = b1 + bxx + byy +

n∑

i=1

βiφ(||(xi, yi) − (x, y)||),

(9)
where (x, y) is the point in the source image and (x′, y′) is the cor-
responding point in the warped image; φ(r) = r2 log r is the radial
basis function; || · || is the Euclidean distance operator; a1, ax, ay ,
αi, b1, bx, by , and βi are the parameters to be determined. To solve
the mapping, two sets of extra constraints are enforced:

∑
αi =∑

αixi =
∑

αiyi = 0, and
∑

βi =
∑

βixi =
∑

βiyi = 0.
Then, we are able to obtain two linear systems. Once the unknowns
are determined, we can warp other points in the source image with
the mappings fx(x, y) and fy(x, y).

An example of image warping is given in Figure 14. Figure 14(a)
shows the sampled contour points (blue crosses) in the source im-
age (Figure 14(b)) and their corresponding points (red dots) in the
warped image. Figure 14(c) is the result by warping the source
image according to the correspondence in (a). It is obvious that
TPS mapping not only maintains the shape contour but also creates
smooth and consistent warped content in the interior region. Based
on the warping, image morphing between two motion snapshots is

(a) (b) (c)

Figure 14: TPS mapping. (a) shows the sampled contour points
(blue crosses) in the source image and their corresponding points
(red dots) in the warped image. (b) is the source image. (c) shows
the result by TPS warping. Note that not only the outline but also
the interior region is naturally warped.



then achieved by blending the result from warping one snapshot
towards the intermediate position and that from warping the next
snapshot towards the intermediate position.

Algorithm 1: Pseudo-code of motion cycle optimization
choose a path length L
generate an initial path IL with length L
choose a temperature T = T0 > 0
Cold = C(IL)
Loop ( T > limit )

Loop (K times)
choose a new path length L
generate a new path IL

Cnew = C(IL)
∆C = Cnew - Cold

if ∆C ≤ 0, accept new path
else if exp(−∆C/T ) ≤ rand(0, 1), accept new path
else reject new path
T = T × AnnealFactor
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