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Abstract

Dashed curve is a frequently used curve form and is
widely used in various drawing and illustration applica-
tions. While humans can intuitively recognize dashed
curves from disjoint curve segments based on the law of
continuity in Gestalt psychology, it is extremely difficult
for computers to model the Gestalt law of continuity and
recognize the dashed curves since high-level semantic un-
derstanding is needed for this task. The various appear-
ances and styles of the dashed curves posed on a potentially
noisy background further complicate the task. In this paper,
we propose an innovative Transformer-based framework to
recognize dashed curves based on both high-level features
and low-level clues. The framework manages to learn the
computational analogy of the Gestalt Law in various do-
mains to locate and extract instances of dashed curves in
both raster and vector representations. Qualitative and
quantitative evaluations demonstrate the efficiency and ro-
bustness of our framework over all existing solutions.

1. Introduction

Dashed curve is a frequently used curve form, where
the curve is made up of a series of disjoint but continuous
curve segments. Dashed curves are widely used in vari-
ous drawing and illustration applications, such as technical
line drawings, graphic designs, fashion designs, paper fold-
ing illustrations, etc. While humans can intuitively recog-
nize dashed curves though they are broken into disjoint seg-
ments, it is extremely difficult for computers to recognize
the broken segments as one semantic curve as high-level
semantic understanding is needed for this recognition task.
There are three major challenges. Firstly, different dashed
curves may be composed of solid curve segments in differ-
ent lengths, widths, and composition patterns, as shown in
Fig. 1a. Secondly, multiple dashed curves might intersect
with each other, which complicates recognition of individ-
ual dashed curves. Thirdly, the background of the drawings
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Figure 1. Dashed curve recognition results.

and illustrations might be noisy due to the quality loss in
the scanning or photo capturing process, which will further
make the identification of the curve segments non-trivial,
especially when the curve segments are of short lengths.

In order to recognize dashed curves from illustrations or
graphic designs, several traditional methods have been pro-
posed based on manually designed heuristics [1,10,18,24].
Due to the limitation of human-designed heuristics, these
methods are generally restricted to solve only dashed curves
of relatively simple and pre-defined shapes and styles and
easily get failed when the input becomes complex, as shown
in Fig. 1b. A workshop was held in 1995 to encourage re-
search efforts in solving this challenging problem [30]. Un-
fortunately, it did not gain much success at that time due
to the limitations of traditional heuristic methods. Later,
methods have been proposed in detecting lines for 3D point



clouds, which share some similarities as the dashed curve
recognition task. However, these methods are still based on
heuristics and make assumptions on the appearance of the
points. Directly applying these methods on dashed illustra-
tions containing dashed curves of different curve styles can-
not obtain satisfying results, as shown in Fig. 1c. Recently,
deep learning based approaches [27,39] have been proposed
in line drawing vectorization and contour detection in nat-
ural photographs, but these methods still cannot be directly
applied in our task, even if the models are re-trained with
dashed illustrations, as shown in Fig. 1f.

We point out that either low-level clues or high-level fea-
tures alone cannot achieve satisfying dashed curve recog-
nition results. With low-level clues only, such as tangent
directions, the computer may easily get confused at junc-
tions or complicated regions. On the other hand, high-level
features are too rough to recognize each individual curve,
especially when the curves are broken into disjoint short
curve segments. Therefore, in this paper, we proposed an
innovative approach that combines high-level features and
low-level clues to recognize the dash curves and output the
precise raster and vector forms of the curves via a learning-
based approach.

Our method is designed based on the idea of Gestalt psy-
chology, which suggests that humans can recognize dashed
curves from broken curve segments based on the law of con-
tinuity [38]. This inspires us to first construct a high-level
understanding of the dashed curves and then use this un-
derstanding to facilitate the extraction and vectorization of
the curves. In particular, we propose to learn the Gestalt
law of continuity of a dashed drawing using a deep neural
network. This network will aggregate the curve segments
into a list of curve descriptors, which contain the high-level
embedding of the dashed curves. However, the aggregated
curve descriptors only contain high-level rough curve rep-
resentations, which cannot be directly visualized. We fur-
ther propose another deep learning network to construct the
pixel-level dashed curves from the high-level curve descrip-
tors. These pixel-level dashed curves are raster representa-
tions and still lack the notion of continuity. So, we pro-
pose the third deep learning network to predict the analytic
form of the recognized dashed curves. The three networks
are trained together to enable end-to-end training and error
propagation. Our method can be applied on dashed illustra-
tions that contain dashed curves of different widths, lengths,
shapes, and styles. Satisfying results are obtained in all ex-
periments.

The major contributions of our framework can be con-
cluded as follows:

• We propose an end-to-end framework that can recog-
nize and extract dashed curves based on their semantic
meaning with high accuracy and robustness.

• We learn to apply the Gestalt law of grouping and con-

tinuity as an explicit constraint in our framework.
• We conduct the learning of the Gestalt law in the fea-

ture, raster, and vector domain simultaneously with
specially crafted supervision.

2. Related work
2.1. Perceptual Gestalt grouping

Gestalt psychology is a stream of theory on how humans
perceive a collection of elements as an entire object [20,28].
The well-known Gestalt principles by Wertheimer [38] re-
flect how the human visual system group elements into
forms. Whenever collections of visual element have one
or several common characteristics, they shall get grouped
and form a new larger visual object - a Gestalt. Psycholo-
gists have been trying to simulate the Gestalt principle by
finding a computational methodology [9] to predict what
humans perceive as Gestalt in images. In this paper, we
propose to introduce the Gestalt principles into the field of
learning-based computer vision, by guiding the neural net-
works to learn the grouping and recognition of similar vi-
sual elements in both the feature space and the vector space.

2.2. Dashed line and curve detection

The problem of dashed line detection has been raised in
the early years of computer graphics research [10]. Correct
recognition of dashed lines is essential for parsing various
types of media, such as sewing and designing pattern books,
nautical charts, and technical line drawings. Early pioneer-
ing works relied on predefined features in the vector domain
and manually designed heuristics [1,10,23]. These methods
usually fail in unexpected cases. In 1995, a dashed line de-
tection contest [30] was held during the First International
Workshop on Graphics Recognition to promote the advance
in dashed line detection algorithms. Later on, a series of
dashed line methods based on Hough transform [18, 22]
was proposed, in which the line predictions are gathered
from the parameter space. However, due to the limitations
of their heuristic designs, these approaches often produce
suboptimal results.

In the meanwhile, the vision community has been work-
ing on the task of line segment detection from natural
images [39]. Recently, the emergence of deep learning
has refreshed the state-of-the-art to replace the classical
heuristics and Hough-based approaches. These methods
either leverage junction analysis [40] to convert junction
into line proposals or employ dense prediction [17] to gen-
erate a surrogate representation and then extract line seg-
ments from the representation. A recent work, LETR [39],
uses the Transformer-based object detection technique [4]
to achieve end-to-end line segment detection without com-
plicated junction analysis or surrogate maps. Even though
these approaches manage to extract straight line segments,



they are unable to understand the Gestalt Law of continuity
and grouping of dashed line segments and group the seg-
ments on the same semantic line. What is more, the existing
works are generally designed for straight line segments. To
the best of our knowledge, no current work can be general-
ized to cope with curve segments.

On the other hand, instance segmentation methods such
as Mask R-CNN [15] can somehow learn to group dashed
line segments via raster mask prediction. However, these
methods usually rely on region proposals on the feature do-
main, which may be interfered by line segments with differ-
ent semantic meanings, which may share similar visual fea-
tures as the one to be detected. These methods also achieve
low quality in recognizing curved line segments. Curve fit-
ting and vectorization [11,14,21,27,32] is another research
stream that is able to convert complex raster graphics into
vector format faithfully. However, most of the curve fitting
frameworks only consider solid curves as inputs and will
treat disjoint curve segments from one single dashed curve
as a list of independent curves instead of a single curve. To
handle disjoint curve segments, [12] and [2] tried to simply
the disjoint curves in the vector space. However, both meth-
ods cannot directly handle dashed curves in raster represen-
tations. [11] used a U-Net [31] model to complete dashed
curves into solid curves, which could be further vectorized.
However, their completion model is not well generalized to
handle dashed curves of different appearances and styles.
Furthermore, the output of this model is still a raster image,
which still needs an extra curve fitting to acquire the analyt-
ical vector form. In contrast, our method can directly take
dashed curve images as inputs and output detected dashed
curves in both raster and vector forms in an end-to-end man-
ner.

Dashed
Curve

Segment

Visual
Form
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Figure 2. Terminology for dashed curve recognition.

Before we go into the technical details, we would like to
define the terminology used in this paper. As shown in Fig-
ure 2, each dashed curve is composed of disjointed curve
segments, i.e. dashed curve segment. Even though these
segments do not contact each other physically, we still per-
ceive these segments as an entire group and a mentally con-
tinuous element. Here we denote the collection of raster
segments from one dashed curve C as the Visual Form, i.e.
the exact visual stimulus of the dashed curve C. We denote
the mentally connected structural line of C in the analytical
vector space as the Semantic Curve.

3. Method
3.1. Overview

Our proposed framework aims to achieve the learning of
the Gestalt law of continuity with deep learning. As illus-
trated in Figure 3, the framework contains three modules:
the Curve Feature Aggregator, the Visual Form Reconstruc-
tor, and the Semantic Extractor. The Curve Feature Ag-
gregator learns to sample and construct a high-level under-
standing of distinct semantic curves into a list of curve de-
scriptors Di = {embi, Pi,0, Pi,1}, where {Pi,j} is the end-
point of a certain dashed curve. After that, the high-level
semantics of each dashed curve will be input to the Vi-
sual Form Reconstructor to guide the virtual continuation of
raster dashed curve segments from the same semantic curve
to produce the visual form. Moreover, we enable another
Semantic Extractor to generate the continuous vector repre-
sentation of the semantic curves from the curve descriptors.
We supervise the module with vector curve regression to
improve the overall framework accuracy in terms of visual
form recognition and semantic curve fitting. The three sub-
modules are trained together to enable end-to-end training
and error propagation. We shall discuss the detailed design
of each module in the following sections.

3.2. Curve Feature Aggregator

As mentioned about the difficulties in recognizing visual
forms and their underlying semantic strokes and in the spa-
tial domain, we hence construct the features of visual forms
with deep neural networks and attempt to learn the feature-
level Gestalt law of continuity to distinguish different vi-
sual forms in the feature space. Specifically, we aim to de-
sign the features with: 1) ability to retain globally (over-
all trajectory) and locally (local continuity and connectiv-
ity) from their compositions; 2) full feature estimation of a
visual form from its beginning to its end to minimize am-
biguity and information loss. We design our Curve Fea-
ture Aggregator module with a vision Transformer archi-
tecture [4, 11, 35]. It first converts the input raster image
of dashed curves into the deep feature space and partitions
distinct semantic curves in the feature domain. After the
partitioning, the module outputs a list of curve descriptors
{CDi} to represent the features of an individual deemed
visual form. The module also aims to regress the deemed
visual form endpoints to narrow down the difficulties in vi-
sual form recognition and maximize the coverage in feature
extraction. The regression of endpoints is also beneficial to
the following visual form reconstruction and semantic curve
fitting modules.

Given an input image I ∈ [0, 1]
w×h, we first obtain an

image feature map X ∈ RW×H×C from a ResNet back-
bone [16]. To make the Transformer aware of spatial infor-
mation of the feature map, we concatenate X with a 2D po-
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Figure 3. Overview. Given an input image of dashed curves, the Curve Feature Aggregator recognizes dashed curves and converts them
into a list of Curve Descriptors; the Visual Form Reconstructor reconstructs the raster-level visual form for dashed curve from the curve
descriptor; the Semantic Extractor generate the vectorized semantic curve autoregressively.

sitional encoding PE ∈ RW×H×dp and then flatten it into
X ∈ RWH×C′

where C ′ = C + dp. We then leverage self-
attention from Transformer encoder to get a processed fea-
ture map Xf . Given the processed feature map Xf , we de-
sign the Transformer decoder to read from the raster image
features and output a list of visual form descriptors to rep-
resent the semantics of individual visual forms. To achieve
so, the decoder decodes Xf with 1D positional encoding
PE1d into a list of curve descriptor {CDi} as:

TransEmb = TransformerDecoder(PE1d, Xf ), (1)

{CDi}N = MLP(TransEmb) (2)

where TransEmb denotes the direct output embeddings
from the Transformer decoder.

To enable feature encoding of an uncertain number of
visual forms, we design the maximum length of the out-
put sequence to be much larger than the actual number
of visual forms in typical cases. We use a classification
head [4, 15, 39] to predict if the output curve descriptor is
valid and discard invalid features. The maximum output
number is set to the size of the input positional embed-
ding PE1d ∈ RN×dTrans . On the other hand, to capture
complete visual form features, we explicitly use another re-
gression head for each entry of the extracted feature em-
beddings to predict the location of visual form endpoints.
The regression will provide strong evidence to enlighten the
feature extraction to be constrained by endpoint locations.
However, direct endpoint sequence regression may be bur-
dened by ordering ambiguities that come from the ordering

of (starting point, ending point) within a prediction and
also from the ordering of curves across predictions with the
same endpoints. The bipartite matching used in common
Transformer detection models [4, 39] cannot mitigate this
problem, as the Hungarian matching of endpoints cannot
distinguish both cases. We opt to leverage the sorting capa-
bility of Transformers [37] to make the ordering sorted and
supervise the output list of endpoints with the ground truth
endpoints sorted in the same manner as [5, 11].
The curve feature loss We employ the curve feature loss to
supervise the multitask learning of semantic curve descrip-
tor validation and endpoint regression. The semantic curve
description validation objective is a binary cross-entropy
classification loss, while the endpoint regression objective
is a combination of L1 loss and L2 loss. The overall loss is
a weighted combination of two objectives:

Le

(
Pi, P̂i

)
= (1− λe)

∥∥∥Pi − P̂i

∥∥∥2
2
+ λe

∥∥∥Pi − P̂i

∥∥∥
1

(3)

Lconfid(pi, p̂i) = −p̂i log pi − (1− p̂i) log(1− pi) (4)

LF =
1

ncurve

ncurve∑
i=1

(βLe + Lconfid), (5)

The target confidence values pi are binary, where ze-
ros indicate invalid predictions [5, 11]. Note that the trans-
formed embedding emb of curve descriptor CDi is not su-
pervised with this Curve feature loss. It will be passed to
the following visual form and semantic curve reconstruc-



tion stages for finer-grain supervision in raster and vector
spaces.

3.3. Visual Form Reconstructor

We propose the Visual Form Reconstructor to learn the
Gestalt law of grouping to cluster all segments from the
same underlying semantic curve and reconstruct the visual
form in the raster space. The module reads the high-level
features of visual forms obtained in the Curve Feature Ag-
gregator and gradually refines the features with the assis-
tance of the underlying image details to achieve precise
pixel-level segmentation of visual form instances.

We employ the exemplary conditional U-Net [31] archi-
tecture to implement the task. The network takes the origi-
nal raster image of the dashed curves as input and uses one
of the curve descriptor entries encoded in the Curve Fea-
ture Aggregator as the condition to reconstruct the raster
visual form of the given curve descriptor. The U-Net starts
from the concatenation of the original image and the end-
point locations. We repeat the 1x4 endpoint vector in the
horizontal and vertical direction to form a 4-channel map
with the same size as the input image. To make the network
aware of the spatial location indicated by the endpoints, we
employ CoordConv [25] in the first convolution layer of the
U-Net to break the shift-invariance and enforce the network
to focus on the endpoint locations. After that, the U-Net
takes several levels of convolution and downscaling layers
to create image features DF (·). Subsequently, we concate-
nate the curve embedding emb with DF (·) in the middle
of the U-Net to serve as the other condition of reconstruc-
tion. The concatenated features will be gradually decoded
and refined by a set of upscaling layers incorporating low-
and mid-level features propagated from the downscaling U-
Net layers. Finally, the last layer of U-Net features will be
decoded with a ResNet block to create the final output of
the reconstructed raster visual form from the conditions.
The visual form loss This objective is designed to super-
vise the Visual Form Reconstructor to learn the raster-level
Gestalt law of continuity and, in the meantime, supervise
the Curve Feature Aggregator to bring more informative
high-level features to the raster space. We thereby formu-
late the visual form loss as below:

LV (Lgt, Lr) = (1− λv)‖Lgt − Lr‖22 + λv‖Lgt − Lr‖1 (6)

3.4. Semantic Extractor

Even if we have constructed the Curve Feature Aggrega-
tor and the Visual Form Reconstructor module to learn the
Gestalt rules, they are lacking the specific notion of conti-
nuity. We find that the Visual Form Reconstructor is mainly
supervised on the notion of grouping, but does not explicitly
supervise the semantic curve and which may cause drift on
the raster-level prediction of visual forms, as it lacks the un-
derstanding of the global semantic curve trajectory. To en-

hance the learning of the Gestalt law of continuity, we add
a Semantic Extractor module to learn the Gestalt Law of
continuity and predict the analytic form of semantic curves
in the vector domain. The Semantic Extractor is a Trans-
former decoder, which reads from the mixed representation
of features of a given visual form in the late layers of Vi-
sual Form Reconstructor and decodes the primitives of a
continuous Bézier representation of the semantic curve in
an autoregressive manner. That is, we implement a virtual
pen moving along the dashed curve and progressively out-
put its vector trajectory with the assistance of visual form
and image features. The autoregressive decoding of stokes
is proven to be efficient in continuous line drawing such
as [3, 8, 27].

The formulation of the Semantic Extractor is defined as:

primitivet, eos = Transformer(primitive0:t−1,M) (7)

where primitivet is the t-th Bezier primitive from the se-
mantic curve, eos is the end of sequence token, andM is the
feature map generated by the last layer of U-Net from Vi-
sual Form Reconstructor. The network progressively gener-
ates a sequence of primitives and stops when the prediction
of eos is larger than 0.5. Given the fact that primitivet and
primitivet−1 are connected, we omit the starting point of
each primitive to remove redundancy:

primitivet = (xc1, yc1, xc2, yc2, xe, ye)t (8)

We found this can also help enforce the continuity of
generated results. For a dashed line Line(xs, ys, xe, ye),
we represent it as a special case of Bézier curve
CubicBezier(xs, ys, xs, ys, xe, ye, xe, ye) by setting control
points as its endpoints.
The continuity loss We train the Semantic Extractor mod-
ule with a continuity loss to supervise the whole output se-
quence to be close to the ground truth semantic curve vector.
The continuity loss shares the similar multitask idea as the
Curve feature loss, with a cross-entropy loss to predict and
supervise the occurrence of the eos token only at the end
of the prediction and a combination of L1 and L2 loss to
regress the control points of each Bézier primitive. The loss
is formulated as:

Leos(eosi, êosi) = −êosi log eosi − (1− êosi) log(1− eosi) (9)

Lp

(
θi, θ̂i

)
= (1− λp)

∥∥∥θi − θ̂i∥∥∥2
2
+ λp

∥∥∥θi − θ̂i∥∥∥
1

(10)

LC =
1

nprimitive

nprimitive∑
i=1

(βLp + Leos) (11)

3.5. Overall loss function

In summary, our training loss function is made up of
three components: (1) a curve feature LF for dashed curve



entity recognition and detection, (2) a visual form recon-
struction loss LV for visual stimulus supervision, and (3) a
continuity loss LC to extract semantic curves and enforce
the continuity constraints. The final loss is formulated as
follows:

L = LF +
1

ncurve
(λV LV + λCLC) (12)

where ncurve is the number of the dashed curves on the
input image, λV = 3.5 and λC = 0.5. We demonstrate the
effectiveness of each loss term in the ablation study (section
4.4).

4. Experiments
4.1. Implementation and training

4.1.1 Framework implementation

We implement our framework in PyTorch 1.8 with its
shipped Transformer module. We use six encoder-decoder
layers for the Curve Feature Aggregator and eight decoder
layers for the Semantic Extractor. Both of the Transformers
use eight attention heads. For Curve Feature Aggregator,
the 1D sinusoidal positional encoding [35] is used for the
parallel decoding scheme [4, 11]. We used a joint training
scheme while carefully designing the learning process for
each module. Please refer to the supplemental material for
the training details, such as hyperparameters and detailed
architecture.
Processing input with solid and dashed curves. We point
out that ambiguity in understanding leads to a recogni-
tion contradiction if solid and dashed curves are recog-
nized simultaneously. A dashed curve can be recognized as
one dashed curve or multiple solid curves, which are both
semantically correct. So, the framework may encounter
recognition ambiguity if solid and dashed curves are trained
together. To tackle the ambiguity, we employ a two-step so-
lution:

1. We train our framework only to detect dashed curves
and remove the dashed curves with a U-Net based dash
curve removing network [11, 31].

2. We then train another identical framework (same as
the dashed curve recognition framework) only to de-
tect solid curves.

In this manner, we avoid the ambiguity in recognizing
dashed curves and solid curves at the same time to improve
the overall accuracy and efficiency.

4.1.2 Dataset

We generate a synthetic dataset for training and validation
since no existing dashed curve dataset appears in the current
literature. For the evaluation of real-world examples, we
collect sewing patterns, clothing pattern plans, and graphic

Synthetic Data Real-world Data

Figure 4. Sample images of our dataset.

designs that contain dashed curves. We annotate each in-
stance of visual forms manually on the dataset. We show
some data samples in Figure 4.

We use the Canvas 2D API to create the synthetic dataset
of dashed curve drawings and ground truth labels, includ-
ing the visual form subdivision and the analytical semantic
curve representation. We implement the data generator with
node-canvas [19] and cairo [29]. The generator ren-
ders random straight and curved lines with the dashed pat-
tern using the setLineDash() method from the Canvas
2D API. We chose the exemplary line dash patterns used by
TikZ [34] and randomly chose 20 different dash patterns for
synthesis. To stabilize training and strive for better gener-
alization ability, we opt to design a progressively growing
training pool, with a maximum number of 20,000 data sam-
ples. During training, we sequentially sample the data from
the pool and drop 1000 new samples to the pool for each
epoch. We also apply data augmentation to the training and
validation dataset by adding perturbations to the colors and
line trajectories. We shall describe the detailed augmenta-
tion approach in the supplemental material.

4.2. Evaluation metrics

We refer to the dashed line detection contest [30] to
highlight the characteristics of a high-quality dashed curve
recognition:

• To detect all the dashed lines/curves from the input im-
ages;

• To accurately distinguish the instances of visual forms
and estimate their pixel locations;

• To track the dashed lines and curves correctly based on
their semantics.

We would like to design our evaluation and comparisons
based on the above criteria, but unfortunately, none of the
existing methods fulfill all of them. As a result, we have
to conduct experiments from different perspectives of the
visual raster form and the semantic vector form. Firstly,
we present a quantitative comparison on the endpoint pre-
diction accuracy with Line Segment Detector (LSD) [13],
probabilistic Hough transform based method (HT) [22], and
LETR [39]. These methods can only detect lines in the rep-
resentation of endpoints and cannot recognize visual form
instances. We compute the structure-based average preci-
sion (sAP ) and structure-based F-score (sF ) [17,40] in this



experiment. Secondly, we experiment with the pixel-level
prediction of visual form instances against the instance seg-
mentation methods [15, 26]. We evaluate the performance
with the average IoU-based average precision (mask AP)
on all visual form instances. Finally, to compare with those
vector-based line and curve detection methods [11, 27], we
evaluate the Chamfer distance (CD), Hausdorff distance
(HD), and earth mover’s distance (EMD) to measure how
well the methods trace the dashed curve trajectory in the
vector space. The distances are computed based on the
dense sampling of the prediction towards the ground truth
semantic curve. We want to emphasize again that only our
framework can achieve all these three tasks simultaneously
to achieve both high-quality raster visual form extraction
and vector semantic curve estimation. For fair compar-
isons, we have retrained [39], [15], and [26] on our synthetic
dataset.

4.3. Results and comparisons

Method sAP5 sAP10 sAP15 sF5 sF10 sF15

LETR? [39] 14.4 42.5 61.3 33.6 60.7 75.0
Ours 23.1 55.4 71.3 43.4 70.6 81.2

Table 1. Quantitative comparison against the SOTA dashed line
segment detection, LETR [39]. Note that LETR can only detect
straight line segments from input images.

Method bAP50 bAP75 mAP50 mAP75

Mask R-CNN [15] 71.2 57.6 2.0 1.0
Mask R-CNN† [15] 64.9 54.1 5.8 2.1
Swin? [26] 71.6 36.3 1.5 0.0
Swin?† [26] 64.7 35.5 10.1 3.9
Ours / / 42.3 26.7

Table 2. Quantitative comparison on the raster visual form ex-
traction. We treat it as a special case of instance segmentation. ?

indicates state of the art for instance segmentation method. Meth-
ods with † are trained and evaluated on rasterized semantic curves
(connected visual forms) as ground-truth masks. Here we denote
box AP and mask AP by bAP and mAP respectively.

Method IoU↑ HD↓ CD↓ EMD↓
DVTD [11] 45.2% 50.9 0.0633 0.399
GVS? [27] 52.0% 52.0 0.0303 0.439
Ours 52.2% 50.1 0.0157 0.412

Table 3. Quantitative comparison on tracking quality of dashed
curves. ? indicates state of the art for line drawing vectorization.

Endpoint estimation We demonstrate the visual compari-
son of line segment detection methods in Figure 5. We can
find that HT and LSD can only group a small portion of

no Lv no Lc no sorting full method
mAP50 ↑ / 12.1 32.7 42.3
mAP75 ↑ / 6.6 15.5 26.7
IoU ↑ 41.3% / 39.1% 52.2%
HD ↓ 52.9 / 51.3 50.1
CD ↓ 0.0972 / 0.0565 0.0157
EMD ↓ 0.912 / 0.673 0.412

Table 4. Ablation study on the loss terms and framework design.

dashed lines but fail to distinguish solid lines and dashed
lines. LETR [39] is able to detect only dashed lines and fail
to predict the endpoint precisely. By contrast, our frame-
work can recognize most of dashed line segments can pro-
duce accurate endpoint estimation. We highlight our evalu-
ation statistics against LETR in Table 1.
Raster visual form evaluation The quantitative evaluation
results are shown in Table 2. We find that the representative
instance segmentation methods [15, 26] can locate dashed
curves via bounding boxes but fail to extract them from the
input due to the lack of topology and continuity understand-
ing of dashed complex curves. By contrast, our method
achieves much better performance in terms of visual form
reconstruction.
Vector semantic curve tracking We demonstrate the re-
sults of semantic curve tracking in Figure 6. For a fair com-
parison against GVS [27], we use the preprocessing tech-
niques from DVTD [11] to complete the dashed curves into
solid curves. Both DVTD and GVS fail to predict meaning-
ful semantics of dashed curves, while our framework can
recognize better semantics. The quantitative evaluation re-
sults are shown in Table 3. Our framework outperforms
DVTD and GVS in terms of rasterized IoU, HD, and CD.
We also evaluate the R-GVS [27] that is designed for rough
sketches. We find it can directly handle dashed curves but
generate unsatisfactory results.

4.4. Ablation study

To verify the effectiveness of our framework design, we
conduct ablation studies and demonstrate the quantitative
ablation results in Table 4.
Sorting mechanism in training the Curve Feature Ag-
gregator. We explicitly sort the ground truth endpoint tar-
gets for curve descriptors in the training of the Curve Fea-
ture Aggregator. To validate the sorting mechanism, we
train an alternative version of the Curve Feature Aggregator
that uses bipartite matching [4] for supervision. We find that
the endpoint regression performance degrades in this set-
ting, which is conforming to the conclusions drawn in [5].
Furthermore, the curves that share endpoints could result in
confusion for training.
Loss terms. We also conduct ablation studies with differ-
ent loss terms. We find that the curve feature loss is crit-
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Figure 5. Visual comparison on the extraction of straight visual forms.
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Figure 6. Visual comparison on the recognition and extraction of visual forms with curvature. Curves are visualized with distinct colors.

ical to our framework. Without the curve feature loss our
framework will not converge. The related outputs of visual
form loss and continuity loss lie in different modalities, so
we cannot compare them directly. Compared with the full
methods, we can find that both visual form loss and conti-
nuity loss can help improve performance.

4.5. Limitations and discussion

The formulation of endpoint regression and curve de-
scriptor limits the scope of our framework to be only within
line and curve segment groups, i.e., we can only learn the
Gestalt Law on curve-like structures. We shall keep explor-
ing novel solutions to extend the proposed framework to
be compatible with the Gestalt Laws on other types of 2D
shapes and contents. Additionally, our framework tends to
separate double lines, while humans would sometimes treat
the double line as a complete entity. It is difficult to imitate
this behavior as there is no clear gap between two parallel
dash lines and one double line. The recognition ambiguity

of double lines remains an open problem. Moreover, our
framework strongly relies on the Transformer [35] architec-
ture. The computational cost of our framework is high. We
shall investigate the possibility to include efficient attention
mechanisms [6, 33, 36] as potential future improvements.

5. Conclusions

In this paper, we present a Transformer-based framework
for dashed curve recognition. We employ a universal frame-
work with the gestalt law of grouping and continuity to
achieve handling of a vast diversity of discontinued lines,
which is proven to be effective by a series of experiments.
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