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Abstract—This paper presents a modular framework to efficiently apply
the bidirectional texture functions (BTF) onto object surfaces. The basic
building blocks are the BTF tiles. By constructing one set of BTF tiles, a
wide variety of objects can be textured seamlessly without re-synthesizing
the BTF. The proposed framework nicely decouples the surface appearance
from the geometry. With this appearance-geometry decoupling, one can build
a library of BTF tile sets to instantaneously dress and render various objects
under variable lighting and viewing conditions. The core of our framework
is a novel method for synthesizing seamless high-dimensional BTF tiles, that
are difficult for existing synthesis techniques. Its key is to shorten the cut-
ting paths and broaden the choices of samples so as to increase the chance
of synthesizing seamless BTF tiles. To tackle the enormous data, the tile
synthesis process is performed in compressed domain. This not just allows
the handling of large BTF data during the synthesis, but also facilitates
compact storage of the BTF in GPU memory during the rendering.

Keywords— I.3.7.b Three-Dimensional Graphics and Realism – Color,
shading, shadowing, and texture, I.3.3 Picture/Image Generation, I.3.6
Methodology and Techniques

1 INTRODUCTION

Realistic modeling and rendering of surface-light interac-
tion is one of the major goals in computer graphics. Sev-
eral reflectance models of different levels of detail, such as the
BRDF [5,43], BTF [12,20,47], and BSSRDF [24,50] have been
proposed to address the problem. This paper introduces a modu-
lar framework to apply the bidirectional texture functions (BTF)
in appearance modeling. Our goal is to decouple the BTF syn-
thesis from the surface geometry, so that changing the surface
geometry does not require re-synthesizing the BTF. To achieve
this goal, we first construct the BTF tiles instead of directly syn-
thesizing the BTF on the geometry surface.

Surface appearance modeling using the BTF can be roughly
subdivided into the following phases: 1) BTF acquisition (real
or synthetic data), 2) BTF synthesis, 3) BTF compression, and
4) BTF rendering. Once the raw BTF data is acquired, existing
approaches normally synthesize the BTF directly onto the tar-
get geometry to avoid visible cutting seams and to minimize
the geometric distortion. However, as the synthesis process
is applied directly onto the target geometry, the synthesized
BTF data is tied to the geometry surface and cannot be reused
elsewhere. Furthermore, if we want to change the surface ap-
pearance with another BTF, we are forced to re-synthesize the
BTF data even for the same target surface. Rather than having
a surface-dependent BTF data, the proposed framework intro-
duces a tile space to decouple the surface geometry from the
synthesis process. The decoupling is done by replacing the tar-
get geometry surface with an intermediate tile space and by syn-
thesizing the BTF in this tile space. Figure 1 outlines the pro-
posed approach. Note that the proposed BTF synthesis frame-
work is independent of the geometry. With this framework, we

gain the following advantages:

Surface Independence and Reusability Since the synthe-
sized BTF tiles are independent of the surface geometry, we can
efficiently synthesize the BTF tiles without referring to any par-
ticular surface geometry. The tile set can be repeatedly used for
dressing a wide variety of surface models; we do not need to
modify any tile or synthesize more tiles. Hence, one can con-
struct a library of BTF tile sets and use the tile sets over and over
again.

Instant Re-dressing Furthermore, by defining a canonical or-
ganization of tiles so that all BTF tile sets share the same tile
arrangement, we can instantaneously re-dress a tiled surface
simply by looking up another tile set. No re-tiling nor extra
computation is needed.

Aperiodic Even the total number of BTF tiles within a tile
set is finite, the non-periodic property is achieved via Wang
tiling [9, 46, 55]. As the conventional Wang tiling is only ap-
plicable for planar domain, we employ the techniques we de-
vised in our previous work [18] to generalize Wang tiling on
surfaces with more general topologies.

Compactness Since the BTF tiles are rectilinear in structure,
they not just nicely fit into the memory, but also facilitate com-
pression using standard block-based methods like S3TC. The
entire BTF data is compact enough to be stored in current GPU
memory for time-critical rendering.

The core of our work is the BTF tile synthesis. Due to the
high dimensionality and enormous storage of the BTF, it is hard
and computationally very expensive to find a synthesis solution
without any obvious seam. Unlike the color (RGB) texture syn-
thesis involving only 3 dimensions, BTF synthesis usually in-
volves up to thousands of dimensions. While the BTF exemplar
for synthesis is usually small in spatial resolution (probably due
to acquisition difficulty and high storage requirement), finding
a solution without obvious seams over thousands of dimensions
is even more difficult. To solve the problem, we present a novel
method for synthesizing high-dimensional BTF tiles. It consists
of four major sub-steps: corner sampling, edge synthesis, frame
construction, and interior area synthesis. To make the synthesis
tractable, we also perform the synthesis in a compressed do-
main.

2 RELATED WORK

2.1 Bidirectional Texture Function
In computer graphics, the use of BTF involves the following

processes: 1) acquisition, 2) compression, 3) synthesis, and 4)
rendering.
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Fig. 1. Overview of the proposed framework.

BTF acquisition Dana et al. [12] were the first in capturing
and modeling the BTF data from real-world materials. They
built the first BTF database called CUReT [11]. Another data-
base of higher-resolution and denser-sampled BTFs was re-
cently collected by the University of Bonn [4, 36]. Furukawa
et al. [19] devised an automatic method in capturing the BTF
data from 3D models by using range cameras and reconfigurable
camera array at the same time. Han and Perlin [23] developed
a kaleidoscope-based capturing system for fast capturing of the
BTF data without mechanical movement.

BTF compression Ginneken et al. [20] proposed to use tex-
ture histogram to correlate texture with viewing and irradiance
changes. Leung and Malik [33] developed the 3D texton con-
cept as clusters of filter output of textures under different view-
ing and lighting configurations. They further applied the method
on the CUReT data for texture recognition. Suykens et al. [48]
represented the BTF as spatially variant BRDF and applied the
chained matrix factorization (CMF) to decompose it and render
it using the GPU. On the other hand, the PCA method [10,26,56]
and the multi-linear method [34, 53] were also used to com-
pactly represent the high-dimensional and gigantic BTF data.
Spherical harmonics [43] is another stream of research on com-
pressing high-dimensional BTF. Inspired by the BRDF repre-
sentation, Wong et al. [32, 60, 61] achieved compression in fre-
quency domain using spherical harmonic transform.

BTF synthesis Before rendering the BTF data on a target
geometry surface, the BTF has to be synthesized with refer-
ence to the target geometry. Liu et al. [35] were the first in
applying texture synthesis methods [14,15,25,29,37,52,59,62]
to produce seamless BTF. Approximated geometry was first re-
covered using shape-from-shading and then served as a guid-
ance for the BTF synthesis process. Tong et al. [51] improved
this method and synthesized the BTF on arbitrary surfaces us-
ing the k-coherent search method. Zhou et al. [63] presented an
interactive painting system to efficiently synthesize the BTF on
arbitrary surfaces using graph-cut [29].

BTF rendering The BTF captures the surface appearance as
well as its mesostructure; thus, it can greatly increase the sur-
face realism in the rendering. Chen et al. [6] applied the BTF
to render feather with a controllable parametric L-system. Sat-
tler et al. [41] captured the mesostructure of fabric by using
the BTF formulation and applied the compressed BTF data to
render cloth. Sloan et al. [45] applied bi-scale decomposition
on radiance transfer so as to add global transport effects to the
BTF rendering. Wang et al. [57] proposed a real-time rendering
framework for plant leaves using the spatially variant BRDFs
along with subsurface scattering analysis.

2.2 Wang Tiling

The core of our BTF synthesis is Wang tiling [55]. The the-
ory of Wang tiles can be traced back to the early 1960s when
Wang [55] proposed non-periodic tiling of a plane. The tile set
consists of a set of square tiles, known as Wang tiles, where
edges of tiles are color-coded. In order to create a valid tiling
of a plane by Wang tiles, all shared edges should have matched
color. Grunbaum and Shepherd [21] examined this subject in
depth, and presented the non-periodic tiling of a plane using a
finite Wang tile set.

Stam [46] was the first in applying non-periodic Wang tiling
to texture creation. Wang tiles were used as texture container for
patterns such as water surface and caustic. Cohen et al. [9, 42]
further investigated the use of Wang tiles in texture synthesis,
and invented an automatic method to synthesize textures on
Wang tiles. Stephen [7] later applied tiling to create animated
flow pattern. Wang tiles were extended to contain flow informa-
tion. Wei [58] devised a Wang tile arrangement scheme in tex-
ture memory so as to correct the texture filtering problem across
tile images. Fu and Leung [18] later generalized the conven-
tional Wang tiling mechanism, and made Wang tiling applicable
to arbitrary topological surfaces. While [18] discusses only con-
ventional texture tiling, this paper focuses on the more general
BTF texture tiling and introduces a novel synthesis mechanism
for making high-dimensional BTF tiles. Recently, Lagae and
Dutré [31] invented an alternative Wang tile set by using col-
ored corners instead of colored edges, while Kopf et al. [28]
developed a recursive mechanism in Wang tiling.

3 BTF TILE SYNTHESIS

The BTF is a six-dimensional function capturing the surface
reflectance of a 2D texture under variable illumination and view-
ing configurations:

The BTF data space = V × L × T ,
where V is the viewing domain {θv, φv}, L is the lighting domain
{θl, φl}, and T is the texture (spatial) domain (u, v). Azimuth φv

(and φl) spans [0, 2π) while altitude θv (and θl) spans [0, π/2]
over a hemisphere. Thus, an acquired BTF sample can be stored
in the form of a six-dimensional table of pixels, or equivalently
a four-dimensional array of texture images. Starting with a dif-
ferent point of view, Wong et al. [60] independently proposed
the same 6D formulation known as the apparent BRDF of pixels
(ABRDF) in the context of image-based rendering.

3.1 BTF Compression

Due to the enormous data volume of the BTF, processing of
a plain BTF is computationally very expensive. To reduce the
computational cost, we propose to synthesize the BTF in the
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Fig. 2. Compressing the BTF data using the double spherical harmonic projec-
tion with the constrained least square method.

compressed domain. First, we apply the spherical harmonic
(SH) transform on both the lighting (θl, φl) and viewing (θv, φv)
dimensions, i.e., double SH projection [43]. The spatial dimen-
sion (u, v) is left untouched as the subsequent BTF synthesis will
perform spatial segmentation. Hence, the outcome of this en-
coding is a 2D array of SH matrices. Each element (u, v) main-
tains a kl × kv matrix of the SH coefficients, where kl and kv

are the number of SH coefficients kept for lighting and viewing
dimensions, respectively (see Figure 2).

The double SH projection we employed is not obtained by
spherical integration because the BTFs are normally acquired
(sampled) over the upper hemisphere only, instead of the full
sphere. Rather than using least square fitting as in [44], we ap-
plied the constrained least square (CLS) method to estimate
the noise-proof SH coefficients [32]. It can be shown that SH
coefficients with large magnitude are very sensitive to noise in-
troduced by modern quantization and compression techniques.
The CLS method noise-proves the SH coefficients by suppress-
ing their magnitudes. Although we applied spherical harmonic
transform to compress the BTF data in our current implemen-
tation, it may also be replaced by other sophisticated represen-
tations such as PCA or TensorTextures [53] because our frame-
work is independent of the compression scheme being adopted.
However, since the constrained SH projection we currently em-
ployed is noise-resistant, we can minimize the visual artifact in-
troduced by the quantization process that follows.

3.2 Synthesizing the BTF Tiles

This subsection introduces a novel method for synthesizing
high-dimensional BTF on rectangular tiles that can facilitate
the following Wang tiling. Cohen et al. [9] synthesized tex-
ture patterns on tiles using the diamond-shaped samples as de-

Fig. 3. Synthesizing seamless tile by merging four diamond-shaped samples [9].

Fig. 5. Sizes (in pixel unit) of corner samples, edge samples, and a BTF tile
(from left to right).

picted in Figure 3. This method first extracts a set of diamond-
shaped samples from the input texture. Then, it creates seam-
less tiles by merging four diamond-shaped samples side-by-side
using dynamic programming [14] or standard graph-cut tech-
nique [29]. Cutting paths are traced in the overlapping regions
between diamond-shaped samples to avoid seam. One advan-
tage of this method is its fast computation as only small number
of diamond-shaped samples is required.

However, when applying it to high-dimensional BTF, we
found that visible seams always pop up along the cutting paths
on the synthesized tile images. The major reason is due to the
high-dimensionality of BTF. Unlike the RGB texture which con-
tains only 3 layers, the SH-projected BTF contains kl × kv × 3
coefficient layers, where kv and kl could be as small as 25 in
order to achieve acceptable rendering quality. Hence, it is very
difficult to always guarantee a seamless cutting path across all
coefficient layers, especially when the cutting path is long.

Therefore, the key is to avoid long cutting paths. To address
this issue, we divide the tile synthesis process into the following
four major steps: corner sampling, edge synthesis, frame con-
struction, and synthesis within frame. This idea was inspired by
the formulation of the Poisson disk tiles [30] invented by Lagae
and Dutré. Figure 4 illustrates these four steps. Our goal is to
increase the chance of obtaining seamless merging. Note that
the tile synthesis process is actually working on a volume with
the third dimension spans the SH coefficients. For simplicity,
we ignore this third dimension throughout the discussion below.

1. Corner Sampling To generate a tile set, we first extract a
set of small corner samples from the raw BTF data. For each
color-coded edge in the tile set, we extract a pair of rectangu-
lar corner samples from the BTF data volume. Each rectangular
corner sample has size h/2× h, provided (w− h)× h is the size
of an edge to be synthesized and w × w is the size of a resul-
tant tile, see Figure 5. Note that the choice of the edge height,
h, corresponds to the feature size in the BTF pattern. Since red
and green (blue and yellow) color-coded edges are horizontal
(vertical) in nature, we pick left and right (top and bottom) rec-
tangular corners for them. Furthermore, when extracting corner
samples from the input BTF volume, we try to maintain the sim-
ilarity between corresponding corner samples so that by the time
they are merged in step 3, we can ensure a seamless cutting path
between corner samples in the combined tile frame.

To be precise, the word “similarity” refers to the seamless-
ness of the cutting paths (from graph-cut) between the corre-
sponding corner samples that will be merged in step 3. In other
words, we should find a set of corner samples in step 1 so that
the cutting paths to be applied in step 3 are of very low matching
error. Note that it is relatively easy to find such a set because the
cutting paths here are much shorter as compared to the case of
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Fig. 4. Four steps for synthesizing a BTF tile: Corner sampling → Edge synthesis → Frame construction → Interior area synthesis.

diamond-based method.

2. Edge Synthesis The second step is to connect pairs of cor-
ner samples by synthesizing the (w − h) × h pixels in between
them. The mechanism is achieved by applying the graph-cut al-
gorithm iteratively to extract patches from the BTF volume and
fill up the blank area in between the corner samples. Figure 6(a)
shows the iterative synthesis of an edge. Also, we should avoid
rotating the T and B corner samples as the SH coefficients are
not rotation-invariant without proper rotation computation.

Note that in applying the graph-cut algorithm, we keep track
of the similarity error (seamless-ness) for all pixels inside the
blank area to be filled. All similarity errors are set to infinity at
the beginning. When a candidate patch from the raw BTF data
is considered, we first overlap it with the existing filled area, and
apply graph-cut to find a cutting path between the patch and the
filled area. Note that the error metric we used is a weighted sum
of square difference between the SH coefficient vectors from
the patch and the filled area. After that, the total error along the
cutting path are summed and compared against the total error
currently inside the fillable area to check if there is any improve-
ment. Hence, if the candidate patch is good enough to be applied
to fill the edge sample, the per-pixel similarity errors inside the
filled area will be updated accordingly based on the errors pre-
viously found along the cutting path. This process is repeated
until the whole area has been filled and the total (also individ-
ual) per-pixel similarity error falls below a certain user-defined
threshold (as well as an individual threshold for each pixel).

3. Frame Construction After synthesizing all edges, we can
construct the tile frame as illustrated in step 3 of Figure 4. At
each tile corner, there is an overlapping area of size h/2×h/2. A
cutting path in this region is determined by the path previously
found in step 1; note that to measure the similarity (seamless-
ness) among corner samples in step 1, we have already applied
the graph-cut algorithm between corresponding corner samples.
Note again that since the cutting paths we used here are much
shorter than that in the diamond-based method, we can easily
find seamless cutting paths in all our experiments, even for the
high-dimensional BTF. Once all edges are joined, the extra area
outside the dotted line are clipped away.

4. Interior Area Synthesis Finally, the graph-cut filling algo-
rithm (as illustrated in the edge synthesis part) is applied again
to iteratively synthesize the interior area within the constructed
frame. Figure 6(b) shows the iterative synthesis of the interior
area.

The reasons why this synthesis method can handle high-

(a)

(b)

Fig. 6. (a) Edge synthesis and (b) interior area synthesis.

dimensional BTF are that it relaxes the constraints (shortens
the cutting paths) and increases the choices of samples (not just
restricted to four selected diamond-shaped samples). The pair
of corner samples corresponding to the same color-coded edge
need not be paired up horizontally or vertically in the input BTF
data volume, so we have more choices for our cornerstones. As
our synthesis method does not limit us to choose four diamond-
shaped samples, we can have numerous choices of samples, and
hence, it substantially increases the chance to obtain seamless
cutting paths. In all our experiments, the proposed method can
successfully determine seamless cutting paths.

3.3 User-Controllable Tile Synthesis

In addition to the fully automatic tile synthesis method pre-
sented above, we also allow the users to interactively edit the
features in order to fine tune the BTF tiles. To achieve this goal,
we developed the user-controllable tile synthesis GUI as shown
in Figure 7. Via this GUI, users can drag-and-drop features from
the data sample onto the BTF tiles and constrain the BTF tile
synthesis process [63] to preserve this user-edited content.

To illustrate how it works, we demonstrate how to synthesize
tiles with this GUI. Note that the user can change the lighting
and viewing on the synthesized BTF tile during the editing, but
they are fixed in Figure 7 for simplicity.

1. Feature Extraction As shown in Figure 7(a), we first apply
a user-guided image segmentation technique to extract features
in the raw BTF, the “holes” in this particular example. After the
segmentation, the GUI will highlight the extracted features in
red color.

2. Corner Sampling Figure 7(b) presents the corner sampling
process. These corner samples can be selected automatically or
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Feature sample

…

(b)

(c)
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Synthesized edge
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(d)
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the  constrained features

Features can also be added 
to the interior of tiles

A final synthesized tile

Fig. 7. Demonstration of our user-controllable tile synthesis GUI: (a) feature
extraction, (b) corner sampling, (c) interactive edge synthesis, and (d) inter-
active interior area synthesis.

manually. To match the color tone of the background BTF with
the color of the features, the user can optionally tune the hue and
saturation of the background BTF. As the resultant color is ba-
sically a linear combination of SH coefficients, we can tune the
color tone by tuning its SH coefficients directly. Note that back-
ground BTF refers to the BTF (usually low frequency) already
synthesized on the BTF tiles.

3. Edge Synthesis After generating the corner samples, we
synthesize the edges. As depicted in Figure 7(c), we can inter-
actively drag-and-drop previously segmented features onto the
edge using the GUI and apply a constrained texture synthesis to
fill the blank area (highlighted in red). Since each synthesized
edge is ultimately divided into two halves during the frame for-
mation (see Figure 4), we can match individual features even
they cross the edges of two tiles.

4. Interior Area Synthesis Figure 7(d) shows a resultant tile
frame constructed using the edge generated in Figure 7(c). The
lower half of the edge corresponds to the top edge of the frame.
Similarly, we can also introduce features into the interior of a
tile, before applying the constrained texture synthesis to fill its
interior blank area (highlighted in red).

With this GUI, we allow the user to take full control on the
generation of the desired BTF in practical applications. Features
can lie on the edges of tiles and are still matchable after the
tiling. Sometimes, it could be hard to synthesize features with
regular structures that are relatively large compared to the size of

tiles, but with this GUI, we can constrain the features on edges
and tiles, and thus can preserve features originally in the raw
BTF data.

4 TILING AND RENDERING

4.1 Tiling

Before dressing a geometry surface with the BTF tiles, we
have to parameterize the geometry surface. Techniques con-
cerning surface parameterization [3, 13, 17] were studied inten-
sively in recent years. Examples include the shell map struc-
ture [16, 39] on various 3D models as well as the PolyCube-
Map method [49] for efficient texture mapping. In our current
implementation, we adopt the PolyCube-Map method to install
a quad-based structure on the input meshes. However, we have
to emphasize that any low-distortion surface parameterization
can be adopted in our tileable BTF framework.

Fig. 8. A set of Wang tiles (left) and a valid Wang tiling (right).

After the surface parameterization, Wang tiling [9, 18, 46, 58]
is employed to dress up the geometry surfaces with the match-
able BTF tiles, and this useful tiling tool also helps to formulate
the BTF tile arrangement onto the parameterized surfaces. As
illustrated by Figure 8, Wang tiles have color-coded edges and
the matching of edge color between tiles leads to a match in
the texture pattern contained in the tiles. Thus, we can create a
seamless texture pattern non-periodically on the tiled region.

4.2 Rendering

Once we complete the above offline pre-computation, the ren-
dering of BTF tiles on geometry surfaces is straightforward.
Figure 9 illustrates the basic rendering mechanism: 1) the TBN
transform [2, 38] and 2) the double SH reconstruction. The
abbreviation TBN refers to the local tangent space on object
surface, formed by tangent (“T”), binormal (“B”), and normal
(“N”).

Fig. 9. Transformation between tile space and object space.
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Local Illumination To ensure the SH coefficients to be
reusable for tiling different surfaces, they have to be encoded
in the local tile space. Hence, the transformation of both light
and viewing vectors from the object space to the local tile space
is required for computing the local illumination. It is important
to note that the tangents and binormals are not defined by the
local curvature as in general TBN transform [2, 38]. Rather, we
align them with the local surface parameterization grid so that
the transformed light and viewing vectors confirm to the coor-
dinate system of the tile space as defined in the raw BTF sam-
ples. After the transformation, we look up the corresponding
quantized SH coefficients, unquantize them, perform double SH
reconstruction (inverse transform) to obtain the reflectance, and
compute the final pixel color.

Distant Environment To render the BTF-tiled objects illu-
minated in a distant environment, our system currently supports
two approaches: 1) importance sampling [1] and 2) frequency-
domain approach [43]. The importance sampling approach ap-
proximates the illumination of distant environment using a lim-
ited number of directional lights, say 200 lights. Efficient sam-
pling algorithms have been proposed recently [1,8,54]. We used
the Spherical Q2-Tree sampling technique [54] in generating the
samples. For each sample (directional light), we render an im-
age by local illumination. The final result is produced by sum-
ming the rendering results from multiple passes of such local
illumination.

The frequency-domain approach first encodes the distant
environment as a SH coefficient vector. The pixel color is com-
puted by performing the inner product between the SH matrix
(BRDF),�cρ, and the SH vector (distant environment),�ce, in fre-
quency domain. However, a rotation, R, on �ce has to be carried
out at each pixel, as the local tile space BTF (�cρ) and the en-
vironment (�ce) are SH-encoded in two different coordinate sys-
tems. Further note that the CLS we used actually encodes the
BRDF in the hemispherical SH domain; the lower hemispheres
of the basis functions are all zeros. An autocorrelation matrix,
A, is required to convert the full-sphere SH coefficients of dis-
tant environment before performing the inner product. Readers
are referred to [32] for the mathematical details. In matrix form,

the final pixel radiance p = �cρ(�v)T [A][R]�ce , (1)

where�v is the viewing direction corresponding to the pixel in
tile space; �cρ(�v) is a kl-dimensional vector reconstructed given
the current viewing direction �v; A is a kl × kl matrix with ele-
ments,

aij =
∫

ΩH

yi(�s)yj(�s)d�s , (2)

for the integral of two spherical harmonic basis functions over
the hemisphere ΩH . This matrix of integrals can be precomputed
numerically (see Appendix for the definition of yi). R is a kl ×kl

matrix that rotates the environment coefficient vector�ce to align
with �cρ in local tile space. The elements of matrix R can be
determined as described in [22]. However, a more efficient way
to rotate �ce is to compute it analytically [27, 40]. In our current
implementation, we compute the reflected radiance using this
frequency-domain approach and the rotation of �ce is computed
analytically. In addition, our current implementation does not
render the macro-scale shadow due to the object. To account for

TABLE I

PROPERTIES OF RAW BTF DATA SETS IN OUR EXPERIMENTS.

Original Spatial Light View Total
BTF Image Resolution Sampled Sampled Size

FLOORTILE 800 × 800 81 81 12. 6GB
IMPALLA 256 × 256 81 81 1. 29GB

WRINKLES 128 × 128 50 60 147MB
HOLES 128 × 128 51 51 128MB

REACTDIFFUSE 128 × 128 81 81 321MB

TABLE II

PERFORMANCE OF DATA COMPRESSION (INCLUDING DOUBLE SH

PROJECTION AND UNIFORM QUANTIZATION).

Resolution × No. of Coefficients Timing Compress
light × view View(kv) Light(kl) (h:m:s) Rate

128 × 128 × 81 × 81 25 25 10 : 13 9. 53%
(321MB) 36 25 12 : 41 13. 73%

256 × 256 × 81 × 81 25 25 17 : 47 9. 53%
(1. 29GB) 36 25 20 : 51 13. 73%

800 × 800 × 81 × 81 25 25 2 : 51 : 29 9. 53%
(12. 60GB) 36 25 3 : 22 : 00 13. 73%

this kind of shadow, the bi-scale radiance transfer [45] can be
employed.

5 IMPLEMENTATION AND RESULTS

5.1 Data Sources

We have tested the proposed framework on both real and syn-
thetic BTF data. The real data employed in our experiments is
mainly from the Bonn BTF database [4, 41]: FLOORTILE and
IMPALLA. These BTF data samples are captured with 81 sam-
ple lighting and 81 sample viewing directions, resulted in a set
of total 6,561 sample images in RGB format. In addition to the
Bonn BTF database, we also used two BTF data obtained from
MSRA [35, 51]: WRINKLES and HOLES, and another synthetic
BTF data produced ourselves: REACTDIFFUSE. The total size
of the BTF data sets ranges from 128 MB to 12.6 GB. Table I
summarizes the properties of all raw BTF data used in our ex-
periments.

5.2 Compact Data Representation

Since the plain BTF data samples could be too large to be fit
into the conventional PC memory, our data compression engine
performs the double SH projection and the uniform quantiza-
tion in a scanline-wise fashion. This approach can greatly re-
duce the amount of disk I/O and optimize the data processing
speed. Then, each coefficient is quantized to an 8-bit integer
so that we can hold all quantized SH coefficients in memory
afterwards. Table II shows the timing and performance statis-
tics of the compression including the double SH projection and
the uniform quantization tested on a PC with Pentium IV 3.2
GHz CPU and 1 GB memory. Different number of SH coeffi-
cients are tested. Column “Timing” shows the time to perform
double SH projection and uniform quantization. It increases as
the raw BTF data size or the number of SH coefficients em-
ployed increases. “Compression ratio” is measured with respect
to the raw BTF data size. It is mainly affected by the number of
SH coefficients employed and the original sampling rates along
lighting and viewing.
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5.3 Tile Synthesis

In our experiments, the time needed to arrange the BTF tiles
on geometry surfaces is negligible as compared to the time
needed to synthesize the BTF tiles. Fortunately, we only need
to perform the synthesis once in offline. Table III lists the total
time for synthesizing each BTF tile set tested in our experiment
(column “Total Synthesis Time”). The statistics are recorded on
a PC with Pentium IV 3.2 GHz CPU and 1GB memory.

After the BTF tile synthesis, not all BTF elements (BTFels)
could be finally used in a tile set while many other BTFels could
be repeatedly used in different BTF tiles. Keeping all SH coeffi-
cients for each BTF tile is wasteful. To efficiently store the data,
we construct the BTFel table which stores only those referenced
BTFels without duplication. Then, for each BTF tile, we only
store a 2D array of BTFel index pointing to elements in the BT-
Fel table, instead of directly storing the full SH coefficients. By
this means, storing those synthesized BTF tiles in GPU mem-
ory can be highly efficient. Column “Percentage of Referenced
BTFels” in Table III lists the percentage of BTFels referenced,
hence stored, for each synthesized BTF tile set in our experi-
ments, and also the amount of GPU memory needed to store
the BTFels together with the uniform quantization coefficients.
The ratio (the 4th column) is measured with respect to the total
number of texels in the raw BTF data. In addition, note that all
these BTF tile sets have 96 BTF tiles and use 25 × 25 lighting
and viewing SH coefficients, except for the FLOORTILE data set,
which has only 16 × 16 coefficients so that it can be fitted into
the texture memory.

5.4 Results

To demonstrate the renderings of BTF-dressed surface under
different lighting and viewing conditions, two kinds of light-
ing configurations are used in our experiments: local illumina-
tion and distant environment lighting. Figures 10-12 present the
rendering results of BTF-dressed objects illuminated by a point
light source and as viewed from different orientations. From
Figures 10 to 12, the BTF tile sets shown are IMPALLA, HOLES,
and WRINKLES. In each figure, the same BTF tile set is repeat-
edly used to seamlessly dress three objects, BUNNY (the top
row), 3-HOLES (the middle row) and LAURANA (the bottom
row). For each generated image, two boxed regions are blown
up for inspection.

Figure 13 shows the distant environment lit BUNNY. In the
upper row, BUNNY is dressed with the BTF tile set WRINKLES

and lit by GRACE. The lower row shows the BUNNY dressed
with REACTDIFFUSE lit in GALILEO. Importance sampling ap-
proach is used in order to render the macro-scale shadow due to
the object. In particular, we applied the Spherical Q2-Tree [54]
to generate the samples (directions). For all results in Figure 13,
50 samples are used and the corresponding 50 locally illumi-
nated images are summed to generate the final result. The total
time taken to render a 640×480 image are 3.2 min. and 4.5 min.
for WRINKLES-dressed and REACTDIFFUSE-dressed BUNNY,
respectively.

With the appearance-geometry decoupling, we can see that
the same BTF tile set can be repeatedly used to dress up surfaces
seamlessly even the geometries are substantially different.

5.5 Limitations

One major limitation of our method is the BTF being syn-
thesized must be more or less “isotropic” spatially. If the BTF
exhibits an obvious anisotropic pattern, extra effort is needed to
maintain the anisotropic behavior over the object surface. This
is because our tiling approach only ensures the matching locally
among tile edges.

Another restriction is due to the nature of the BTF. Unlike
simple color textures (diffuse reflection) that are independent of
viewing and lighting directions, there is always an intrinsic ori-
entation associated with the BTF as the BTF is acquired under a
specific orientation (coordinate framework). Note that the BTF
captures all frequency components including specular compo-
nent as well as the diffuse component. During the synthesis, we
have to match the pixel values together with the orientation (the
spatial ordering of the pixels). Therefore, all synthesized BTF
tiles must be laid on the tile surface with a consistent orienta-
tion, unlike the color texture tiles that can be randomly oriented
provided the edges are matched.

The proposed framework relies on a proper quad-based para-
meterization over the object surface. If the parameterized quads
are not maintained with similar sizes or the quads are over-
distorted, the final dressing may be malformed. This is mainly
due to the fact that BTF tiles are synthesized in a single scale
and in a square shape.

6 CONCLUSION

In conclusion, this paper presents a novel and modular frame-
work for efficiently applying the BTF on geometry surfaces.
Given M different surfaces and N different BTF data samples,
if we apply conventional BTF approach, we need to perform
the BTF synthesis M × N times so as to produce all different
BTF dressings on the M different surfaces. In contrast, with the
appearance-geometry decoupling, the proposed framework only
needs to perform the synthesis process N times so as to generate
N sets of BTF tiles corresponding to the N BTF inputs. Once
these tile sets are constructed, we do not need to change them
any more. They can be repeatedly used to dress up M or more
3D models without retiling a model or resynthesizing a tile set.
In this way, the BTF becomes highly reusable. Game developers
can stock a library of BTF tiles and conveniently apply them to
dress up different models in a highly cost-effective manner.

To make this modular framework practical, we also introduce
an original tile synthesis algorithm for synthesizing the BTF
tiles. It divides the BTF tile synthesis into four sub-steps: cor-
ner sampling, edge synthesis, frame construction, and interior
area synthesis. Such approach relaxes the constraints (by avoid-
ing long cutting paths) and increases the choices of samples, in
order to maximize the chance of synthesizing seamless tiles for
the high-dimensional BTF.
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[21] Branko Grünbaum and Geoffrey C. Shephard. Tilings and patterns. W. H.
Freeman & Co., 1986.

[22] Robin Green. Spherical harmonic lighting: The gritty details. In Proc. of
Game Developer Conference 2003 (GDC2003), March 2003.

[23] Jefferson Y. Han and Ken Perlin. Measuring bidirectional texture re-
flectance with a kaleidoscope. ACM Transactions on Graphics (SIG-
GRAPH 2003), 22(3):741–748, 2003.

[24] Pat Hanrahan and Wolfgang Krueger. Reflection from layered surfaces due
to subsurface scattering. In Proceedings of ACM SIGGRAPH 93, Annual
Conference Series, ACM, pages 165–174, 1993.

[25] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and
David H. Salesin. Image analogies. In Proceedings of SIGGRAPH 2001,
Annual Conference Series, ACM, pages 327–340, August 2001.

[26] Pun-Mo Ho, Tien-Tsin Wong, and Chi-Sing Leung. Compressing the
illumination-adjustable images with Principal Component Analysis. IEEE
Transactions on Circuits and Systems for Video Technology, 15(3):355–
364, March 2005.

[27] Joseph Ivanic and Klaus Ruedenberg. Rotation matrices for real spherical
harmonics. direct determination by recursion. Journal of Physical Chem-
istry, 100(15):6342–6347, 1999.

[28] Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski.
Recursive Wang tiles for real-time blue noise. ACM Transactions on
Graphics (SIGGRAPH 2006), 25(3):509–518, 2006.
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APPENDIX

Constrained Least Square Estimation for SH

Given M samples of a spherical function f , �β =
[
f (�s1), · · · , f (�sM)

]T , sampled

at directions {�s1, · · · ,�sM}, we want to estimate an n-dimensional SH coefficient

vector�c that satisfies the following linear system,
�β = Y�c , (3)

where yi(�s) is the i-th SH basis function evaluated at direction�s and

Y =

⎡
⎢⎢⎢⎢⎢⎣

y1(�s1) · · · yn(�s1)

...
. . .

...

y1(�sM) · · · yn(�sM)

⎤
⎥⎥⎥⎥⎥⎦

.

We can set up the following constrained least square (CLS) cost function,

J(�c) = ‖�β − Y�c‖2 + λ(�cT�c − E), (4)
where E is the energy of function f and can be estimated from the sampled values

of f (�s); λ > 0 is a parameter to search. Its constrained solution is given by

�c =
(
A + λIn×n

)−1 �b , (5)

where A = YTY; In×n is an n × n identity matrix; and �b = YT �β. According to

the constraint
�cT�c = �bT (

A + λIn×n
)−2 �b ≤ E , (6)

λ should satisfy the following inequality

�bT (
A + λIn×n

)−2 �b ≤ E . (7)
If we set λ = 0, the least square solution is obtained. If we set λ → ∞, �c is a

zero vector. As λ increases, the norm of�c decreases monotonically. The goal is

to find out the smallest value of λ such that (7) is satisfied. As J can be proved

to be an increasing function of λ, we use an iterative approach to determine λ

by first assigning an initial value of λ and then using a simple binary search to

estimate a suitable value of λ based on (7). For detail proof, readers are referred

to [32].
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Fig. 10. The BTF tile set: IMPALLA.
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Fig. 11. The BTF tile set: HOLES.
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Fig. 12. The BTF tile set: WRINKLES.
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Fig. 13. Distant environment lighting: a BTF-dressed BUNNY illuminated by the HDR environments. Upper row: WRINKLES lit by GRACE. Lower row:

REACTDIFFUSE lit by GALILEO.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts false
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [594.720 846.000]
>> setpagedevice


