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ABSTRACT
We consider the orthogonal range aggregation problem. The
dataset S consists of N axis-parallel rectangles in R

2, each
of which is associated with an integer weight. Given an axis-
parallel rectangle Q and an aggregate function F , a query
reports the aggregated result of the weights of the rectan-
gles in S intersecting Q. The goal is to preprocess S into
a structure such that all queries can be answered efficiently.
We present indexing schemes to solve the problem in ex-
ternal memory when F = max (hence, min) and F = sum
(hence, count and average), respectively. Our schemes have
linear or near-linear space, and answer a query in O(logB N)
or O(log2

B N) I/Os, where B is the disk block size.

Categories and Subject Descriptors
F2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical algorithms and problems—geometric
problems and computations; H3.1 [Information storage
and retrieval]: Content analysis and indexing—indexing
methods

General Terms
Algorithms, theory

Keywords
Indexing, range searching

1. INTRODUCTION
Orthogonal range aggregation is a classic topic in compu-

tational geometry and the database area. In this paper, we
consider that the aggregate function F is max or sum, with
a particular focus on max.
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In the rectangle-intersection-max problem, the dataset S
consists of N rectangles1 r in R

2, each of which is associated
with a weight w(r) ∈ N. Given a rectangleQ, a query reports
the maximum weight of all the rectangles in S intersecting
Q, namely:

max{w(r) | r ∈ S ∧ r ∩Q 6= ∅}.

Several special instances of the problem have been studied
separately:

• Window-max, where each rectangle r ∈ S degenerates
to a point. Of special interest to this paper is 3-sided
window-max, which is a restricted version of window-
max where Q has the form [x1, x2]× (−∞, y].

• Stabbing-max, where Q degenerates to a point.

• Segment-intersection-max, where r (Q) degenerates to
a horizontal (vertical) segment.

See Figure 1 for some illustrations.

In a straightforward manner, the above definitions can
be adapted to F = sum, where the goal becomes finding the
total weight of the rectangles in S intersectingQ. The ability
of handling max and sum implies the ability of supporting
min (which is symmetric to max), count (a special case of
sum where all rectangles have a unit weight), and average
(which can be derived from count and sum).

1.1 Applications
This subsection gives several applications of orthogonal

range aggregation, which sheds some light on its importance
in practice. We discuss first F = max and min, before ex-
tending to other aggregate functions.

In a spatial database, each object in S can be the loca-
tion of a hotel, with the object’s weight set to the hotel’s
rate. A window-min query is “retrieve the cheapest rate of
the hotels in Manhattan”, where Q is a rectangle describing
the area of Manhattan. Sometimes, a data region can be
so complex that it needs to be represented as the union of
simple geometric shapes like rectangles. An example can be
found in the hurricane inquiry system, where an object is
the region struck by a hurricane. In this case, S consists of
the rectangles used to approximate those regions, whereas

1All rectangles in this paper are orthogonal.
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Figure 1: Variants of orthogonal range max search: (a) rectangle-intersection-max, (b) window-max, (c) 3-
sided window-max, (d) stabbing max, (e) segment-intersection-max. In each example, the maximum weight
of the bold objects is reported.

the weight of a rectangle r ∈ S is set to the scale of the
hurricane hitting the region represented by r. A rectangle-
intersection-max query is “find the most severe scale of all
the hurricanes that struck Florida before”. The query be-
comes a stabbing-max query if Q is given as a location in
Florida.

Segment-intersection-max is useful in temporal databases,
which manage the historical versions of a dataset evolving
with time. Consider a database that stores the balances of
bank accounts. Each record has the form ([ts, te], k), indi-
cating that a balance started to be k at time ts and remained
so until time te. This record can be regarded as a horizontal
segment in a 2-d space, where the x- (y-) dimension is time
(balance). Let S be a set of such segments, each associated
with a weight equal to the monthly premium of medical in-
surance paid by the account owner. A meaningful query is
“return the highest monthly premium paid by the owners of
those accounts whose balances were within [$10k, $20k] on
Dec 1, 2010”. The query is a vertical segment in the time-
balance space.

Rectangle-intersection-max has also been studied in bi-
temporal databases [17], OLAP [15, 16], and meteorology
systems [21], whereas stabbing-max has been identified as
a core operation in packet classification [14].

An extensive list of applications for F = count, sum, and
average can be obtained by combining the applications in
[15, 16, 18, 20]. In fact, all the queries given earlier in
italic are still meaningful if they are modified to retrieve
the average (e.g., the query in our first application becomes
“retrieve the average rate of the hotels in the Manhattan dis-
trict”), whereas computation of the average can be achieved
by solving the corresponding count and sum problems.

1.2 Computation model
Our complexity analysis is under the external memory

(EM) model [5], which has been successful in capturing the
I/O characteristics of database algorithms (see a survey in
[19]). In this model, the (main) memory has a capacity of
M words, whereas the disk has an unbounded size, and is
formatted into blocks with B words each. We require B ≥ 9
in our analysis. An I/O transfers a block of data between
the disk and memory. Space complexity measures the num-
ber of disk blocks occupied, whereas time complexity gauges
the number of I/Os performed. Linear cost is interpreted
as O(N/B) for a dataset cardinality N . In this paper, poly-
logarithmic cost should be understood asO(logc

B N) for some
constant c.

We assume that each word has log2 N bits, and that each
weight fits in O(1) words. These assumptions also exist in
the previous work [3, 4, 6, 11, 13, 18] on aggregation prob-
lems. We also make the tall-cache assumption [3, 8] that
M ≥ B2. A typical value of B in reality is 1024 (words), in
which case the assumption essentially says that the memory
should have at least 1 mega words. This is not a demand-
ing requirement for today’s machines. In any case, the as-
sumption is needed only to simplify the construction of the
proposed structures, while all our space and query bounds
hold for any M ≥ 2B.

1.3 Previous results
There is a rich literature on orthogonal range aggregation

in the EM model. When the aggregate function F is max,
the existing results can be summaized as:

• For window-max, the CRB-tree of Govindarajan et al.
[13] answers a query in O(log2

B N) I/Os, and consumes
O(N

B
logB N) space (according to [3]). This has been

improved by Agarwal et al. [3], whose structure has
linear space, and retains the same query complexity as
the CRB-tree. It is unclear whether the two structures
can be improved for 3-sided window-max, which can
be settled by a modified persistent B-tree of [18, 20]
in O(logB N) I/Os per query, occupying O(N

B
logB N)

space.

• For stabbing-max, the best linear-space structure is
also due to Agarwal et al. [3] and solves a query in
O(log4

B N) I/Os. In [4], Agarwal et al. developed an
alternative index that has a better query complexity
O(log2

B N) but uses O(N
B
logB N) space.

• For segment-intersection-max, the modified persistent
B-tree of [18, 20] can be deployed to process a query
in O(logB N) I/Os, but its space consumption is
O(N

B
logB N). No linear-space structure is known to

have poly-logarithmic query time for this problem.

• Using a reduction explained later, the rectangle-
intersection-max problem can be solved in O(log2

B N)
I/Os using an indexing scheme with O(N

B
logB N)

space. Again, there is no linear-space structure with
poly-logarithmic query cost.

When F = count and sum, the counterparts of the above
problems are equivalent to each other [12]. Thus, it suffices
to discuss only rectangle-intersection-count and rectangle-
intersection-sum. The CRB-tree [13] settles the former in



previous ours remarks

3-sided window-max
(N/B, log2B N) [3]

(N/B, logB N)
the result of [3] holds for

(N
B

logB N, logB N) [18, 20] general window-max.

stabbing-max
(N/B, log4B N) [3]

(N/B, log2B N)

(N
B

logB N, log2B N) [4]

segment-intersection-max (N
B

logB N, logB N) [18, 20]

rectangle-intersection-max (N
B

logB N, log2B N) [3, 4, 18, 20]

rectangle-intersection-count (N/B, logB N) [13]
(

N
B

max{1, logB
W
N

}, logB N
)

W=
∑

r∈S w(r). Hence, W=N

rectangle-intersection-sum (N
B

logB
W log2 W

N
, logB N) [13]

for rectangle-intersection-count,
for which our space is O(N/B).

Table 1: Comparison of the existing and our results. Each result is in the format of (space, query). All
complexities are in big-O and worst case.

linear space and logarithmic query cost. For F = sum,
Govindarajan et al. [13] gave an alternative version of the
CRB-tree that has the same query complexity, but requires
O(N

B
logB

W log2 W

N
) space, where W is the total weight of

all the objects, namely, W =
∑

r∈S w(r).

Observe that there is a gap between the space cost
of the two CRB-trees. When each data rectangle has a
unit weight (i.e., W = N), the sum CRB-tree has space
O(N

B
logB log2 N), which is worse than the linear space of

the count CRB-tree. This suggests that the space complex-
ity of the sum CRB-tree may be unnecessarily large for small
W . It remains open how to close the gap.

Various heuristic access methods [15, 16, 21] are available
for orthogonal range aggregation, and have been empirically
shown to work well for selected data and query distribu-
tions. However, they are not known to carry any interesting
performance guarantee in the worst case.

1.4 Our results
Our main results can be summarized in three theorems:

Theorem 1.1. For 3-sided window-max, there is a linear-
space structure that answers a query in O(logB N) I/Os.
The structure can be built in O(N

B
logB N) I/Os.

Theorem 1.2. For rectangle-intersection-max, there is a
linear-space structure that answers a query in O(log2

B N)
I/Os. The structure can be built in O(N

B
logB N) I/Os.

Theorem 1.3. For rectangle-intersection-sum, there is a
structure that answers a query in O(logB N) I/Os, and oc-
cupies O(N

B
max{1, logB W

N
}) space, where W is the total

weight of all the objects. The structure can be built in
O(N

B
logB N) I/Os.

Table 1 presents a detailed comparison of our and previous
results.

Our techniques, except for several technical constructs, re-
volve around a compressed structure which we call the bun-
dled compressed B-tree (BCB-tree), and is designed for the
so-called bundled predecessor problem. While its precise def-
inition will appear in Section 3, informally speaking, in this
problem we are given b = O(B) sets of integers: P1, ..., Pb.

The goal is to preprocess them so that, given an integer q, we
can efficiently find the predecessor of q in every Pi (i ≤ b) at
the same time, i.e., b predecessors need to be reported. Let
K =

∑

i |Pi|. We observe that if every data integer falls in a

domain of size K ·BO(1), our structure (i.e., the BCB-tree)
only needs to consume space sub-linear in K, while guaran-
teeing logarithmic query cost. Another observation made in
this paper is that the BCB-tree presents itself as a powerful
weapon in approaching several aggregation problems. Note,
however, that the idea of solving a single query in multiple
datasets simultaneously is not new; see, for example, [1, 2].

Remark 1. In our problem definitions, the weight of each
data object is an integer. This is not necessary for F =
max, and Theorems 1.1 and 1.2 still hold for real-valued
weights as well. All that needs to be done is to map each
real-valued weight to an integer, and use a B-tree to index
the resulting integers so that we can convert each of them
back to its real-valued counterpart in O(logB N) I/Os. The
same trick, however, does not apply to F = sum, for which
our methods work for integer weights only (this is also true
for the CRB-trees of [13]).

Remark 2. As a corollary of Theorem 1.1, we obtain a
linear-space structure with logarithmic query time for the
following segment dragging problem defined in [10]. The
dataset S is a set of N points in R

2. The goal is to build an
index on S such that, given a horizontal segment s, we can
quickly report the first point hit if we move s downwards.
This can be converted to the 3-sided window-max problem,
where each point in S is associated with a weight equal to
its y-coordinate, and each query is replaced by a 3-sided
rectangle whose upper boundary is s, and its lower boundary
is open.

Remark 3. Theorem 1.2 is clearly applicable to all the
special instances of the rectangle-intersection-max problem.
Hence, we improve the stabbing-max structure of [3], which
incurs O(log4

B N) query cost.

Remark 4. Theorem 1.3 improves the CRB-tree in a small
but interesting way. For rectangle-intersection-count (where
W = N), the space complexity of our structure automati-
cally reduces to O(N/B). We thus close the space gap left
by the CRB-tree. Furthermore, the theorem indicates that,
if W = N · BO(1), rectangle-intersection-sum is solvable in



logarithmic query time by a linear-space index. This feature
is absent in the CRB-tree.

2. PRELIMINARIES
We denote by [x] the set of integers {1, ..., x}. Recall that,

in our problems, each data object can be a point, segment, or
rectangle. In any case, by standard tie-breaking techniques,
we can assume that all the x- (y-) coordinates of the data
objects are distinct. Similarly, we assume that their weights
are also distinct. The rest of the section gives some basic
facts relevant to our discussion.

Reduction for rectangle-intersection-max. For any in-
tersecting rectangles r and Q, at least one of the following
occurs: (i) Q contains a corner of r, (ii) r contains a cor-
ner of Q, and (iii) an edge of r intersects an edge of Q.
Based on the observation, rectangle-intersection-max can
be reduced to a collection of window-max, stabbing-max,
and segment-intersection-max problems as follows. From
the original dataset S, we create a set S1 of points, and a
set S2 (S3) of horizontal (vertical) segments by adding, for
each rectangle r ∈ S, its four corners to S1 and horizontal
(vertical) edges to S2 (S3). Given a rectangle-intersection-
max query with rectangle Q, we execute:

• a window-max query on S1 using Q itself as the search
region;

• four stabbing-max queries on S using the corners of Q
as the query points;

• two segment-intersection-max queries on S2 (S3), us-
ing the vertical (horizontal) edges of Q as the query
segments.

The final answer is the maximum of all the weights retrieved.

Integer encoding. Our structures require an encoding
scheme that compresses a positive integer x into O(log x)
bits, and meanwhile, permits lossless decompression when
given a bit-stream that encodes a list of integers. One such
scheme, for instance, is the gamma Elias code, which con-
verts x into a binary string of ⌊log2 x⌋ zeros followed by
the binary form of x (e.g., 7 is represented as 00111). In
other words, the compressed form of x has no more than
1+2 log2 x bits. To decompress a bit string σ, we first count
the number z of preceding zeros in σ, and then, take the
next z + 1 bits as a decompressed value. If σ has not been
exhausted, the process is repeated to decompress the next
value. The above description does not capture x = 0, but
this can be easily handled by adding another bit.

KL-divergence inequality. We need the following math-
ematical fact in our analysis:

Lemma 2.1 (KL-divergence inequality). Let {x1,
..., xb} and {y1, ..., yb} be two sets of positive values, and
X =

∑

i xi, Y =
∑

i yi. It holds that:

∑

i

(

xi log2
yi
xi

)

≤ X log2
Y

X
.

Proof. For each i ∈ [b], introduce αi = xi/X and βi =
yi/Y . Then:

∑

i

(

xi log2
yi
xi

)

= X
∑

i

(

αi log2

(

βi

αi

Y

X

))

= X
∑

i

(

αi log2
βi

αi

)

+

(

X log2
Y

X

)

We will prove the lemma by showing that
∑

i(αi log2
βi

αi
)

is always non-positive. Regard (α1, ..., αb) as the pdf of a
(discrete) random variable α, and (β1, ..., βb) as the pdf of
random variable β. Observe that:

∑

i

(

αi log2
βi

αi

)

= −
∑

i

(

αi log2

αi

βi

)

= DKL(α‖β)

where DKL(α‖β) is the KL-divergence from α to β, and (as
a well-known fact) is always non-negative. This completes
the proof.

Corollary 2.2. Let x1, ..., xb be b positive values, and
X =

∑

i xi. For any C > 0, it holds that:

∑

i

(

xi log2
C

xi

)

≤ X log2
Cb

X
.

3. BUNDLED COMPRESSED B-TREE
This section discusses the following bundled predecessor

problem. Let P1, ..., Pb be b ≤ B sets of integer keys in [D]

where D = NO(1). Each key k ∈ Pi (i ∈ [b]) is associated

with a label ℓ(k, i) ∈ [L], where L = NO(1). These labels
have a monotonicity property: for any keys k < k′ in the
same Pi, it always holds that ℓ(k, i) ≤ ℓ(k′, i). Given a value
q ∈ [D], a bundled-predecessor query reports, for every i ∈
[b], the label associated with the largest key in Pi that is no
greater than q (if such a key exists). We refer to {P1, ..., Pb}
as a bundle, each Pi as a category, and D as the domain size
of the bundle.

Next we describe a structure named bundled compressed
B-tree (BCB-tree) to solve the above problem. For each key
k ∈ Pi (i ∈ [b]), define δ(k, i) = ℓ(k, i) − ℓ(k′, i), where
k′ is the integer in Pi preceding k. If k′ does not exist,
δ(k, i) = ℓ(k, i). Set K =

∑

i |Pi|, and let P be the multi-
set that unions all of P1, ..., Pb (i.e., a key appears in P as
many times as the number of categories containing it). Let
k1, ..., kK be the keys of P in non-descending order. Define
δ̂(1) = k1, and δ̂(j) = kj − kj−1 for j > 1. We create a list
∆ of length K as follows. The j-th entry of ∆ is a triple
(δ̂(j), i, δ(kj , i)), where i is such that kj ∈ Pi. Since there
are totally b categories, i can be represented with ⌈log2 b⌉
bits. We store δ̂(j) and δ(kj , i) using the gamma Elias code
(see Section 2).

∆ precisely captures P1, ..., Pb, but we must scan it from
the beginning to restore any key/label of any Pi. To remedy



the drawback, we materialize ∆ in a blocked manner. Let
us define a fat block to be 4 consecutive blocks (i.e., 4B
words). Recall that each triple in ∆ corresponds to a key
in P , so the tuples can be grouped by their corresponding
keys. We make sure that each group (which has at most b
tuples) resides in a fat block as follows: adjacent groups are
always placed in the same fat block, as long as it still has
enough space; otherwise, we put the succeeding group in a
new fat block. Since each group occupies at most 3b ≤ 3B
words, at least B words are used in every fat block, except
possibly the last one. Denote by I(v) the minimal interval
enclosing all the keys in a fat block v. Clearly all the I(v)
are disjoint.

Each fat block v is associated with a relay set, denoted as
relay(v), which contains b + 1 values. To explain, assume
I(v) = [α, β]. The i-th (i ≤ b) value in relay(v) equals
ℓ(k, i), where k is the greatest integer in Pi smaller than α
(if k does not exist, store 0 instead). Refer to ℓ(k, i) as the
relay-label of Pi. The last value in relay(v) is α. Note that

the relay set allows us to convert each triple (δ̂(j), i, δ(kj , i))
in v to (kj , i, ℓ(kj , i)) accurately. As b ≤ B, relay(v) can be
stored in O(1) blocks. The first address of these blocks is
kept in v, so that we can load relay(v) after having accessed
v. Finally, we create a B-tree2 on the I(v) of all fat blocks
v. The B-tree, the fat blocks and their relay sets constitute
the BCB-tree.

To answer a bundled-predecessor query q, first descend to
the fat block v whose I(v) = [α, β] covers q. Then, we load
relay(v), and set l[i] to the relay-label of Pi (i ∈ [b]) in
relay(v). Next we scan all the triples in v that correspond

to keys at most q. For each triple (δ̂(j), i, δ(kj , i)) scanned,
increase l[i] by δ(kj , i). Finally, l[1], ..., l[b] are returned as
the answers.

Lemma 3.1. For b ≤ B, the BCB-tree consumes

O

(

K

B logN

(

1 + log
max{L,D,K}

K
+ log b

))

space, and answers a bundled-predecessor query in
O(logB K) I/Os. If all the keys have been sorted, the tree
can be built in O(K/B) I/Os.

Proof. It suffices to consider L ≥ K and D ≥ K. Let us
first bound the number of bits in ∆. Recall that each triple
in ∆ has the form (δ̂(j), i, δ(kj , i)). Apparently, O(K log2 b)
bits are required to encode the i-fields of all the triples. In
the sequel, we focus on the other fields.

Consider any Pi for some i ∈ [b]; and set ni = |Pi|. Let
k′
1 < ... < k′

ni
be the keys in Pi. Hence, δ(k′

1, i) = ℓ(k′
1, i),

and δ(k′
j , i) = ℓ(k′

j , i) − ℓ(k′
j−1, i) for j > 1. The number

of bits required to store the δ(k′
j , i) of all j ∈ [ni] equals

O(ni +
∑

j log2 δ(k
′
j , i)). We have

∑

j

log2 δ(k
′
j , i) = log2

∏

j

δ(k′
j , i)

≤ log2 (L/ni)
ni = ni log2(L/ni)

2All B-trees in this paper have a leaf capacity of B. Unless
otherwise stated, the internal fanout is also B.

where the inequality used the fact that
∑

j δ(k
′
j , i) =

ℓ(k′
ni
, i) ≤ L.

Hence, the number of bits to encode the δ(k′
j , i) of all j, i

is bounded by O(
∑

i(ni +ni log2(L/ni))). As
∑

i ni = K, a
direct application of Corollary 2.2 gives:

∑

i

(ni + ni log2(L/ni)) = O(K(1 + log(Lb/K))).

An analogous argument shows that O(K(1 + log(D/K)))

bits are sufficient to encode the δ̂(j) of all j. As each fat
block (except possibly the last one) packs at least B logN
bits of ∆, the total number of blocks is

O

(

K

B logN

(

1 + log
max{L,D}

K
+ log b

))

.

The relay sets, as well as the B-tree, increase the space by
only a constant factor.

As both L and D are NO(1), the height of the BCB-tree
is bounded by

O

(

logB

(

K

B logN
log(LDb/K)

))

= O(logB K).

This is also the query cost. Finally, it is straightforward to
build the structure bottom-up in O(K/B) I/Os.

Remark 1. When L = BO(1)K and D = BO(1)K, the
space complexity is bounded by O( K

B logB N
).

Remark 2. In the above discussion, we assumed that each
key of a category is associated with a single label. Some-
times, it may be useful to associate k ∈ Pi with a constant
number c of labels ℓ1(k, i), ..., ℓc(k, i), where ℓj(k, i) ∈ [Lj ]

for each j ∈ [c], and Lj = NO(1). In this case, given an in-
teger q ∈ [D], a bundled-predecessor query reports, for each
i ∈ [b], all the c labels associated with the largest integer in
each Pi that is no greater than q. The BCB-tree can be eas-
ily extended to support such queries. Lemma 3.1 still holds,
except that L should be set to maxc

i=1 Li.

4. THREE-SIDED WINDOW-MAX
This section tackles the 3-sided window-max problem. Let

S be a set of N points in R
2. Each point p ∈ S is associated

with a weight w(p) ∈ N. Given a 3-sided rectangle Q :
[x1, x2]× (−∞, y], the goal is to report the maximum w(p)
of all points p ∈ S ∩Q.

4.1 The first structure
This subsection describes a structure with query overhead

O(log2
B N), which will be improved in Section 4.2.

Structure. The base tree is a B-tree T on the x-coordinates
of the points in S. Let root(T ) be the root of T . Given
a node u of T , denote by ρ(u) the parent node of u (if



u = root(T ), ρ(u) = ∅). Let Su be the set of data points in
the subtree of u. Set Ku = |Su|.

Given the weight w of a point in Su, we define the u-rank
of w as λ, if w is the λ-th smallest (among the weights of the
points) in Su. For a point set X and a point p, let Y (X, p)
be the set of points in X whose y-coordinates are at most
that of p. Also, we may refer to the largest weight of all the
points in X simply as the maximum weight in X.

Each internal node u is associated with two BCB-trees Γu

and Λu, except for root(T ), where only Γroot(T ) is needed.
Γu is employed to find the maximum weight, say w, of the
points in Su ∩ Q. The retrieved value of w, however, is its
u-rank. The usage of Λu is to convert the u-rank of w to its
ρ(u)-rank.

Let u1, ..., uB be the child nodes of u. Γu is built on a
bundle {P1(u), ..., PB(u)} that has domain size Ku. Con-
sider any value k ∈ [Ku]. Let p be the point in Su satisfying
|Y (Su, p)| = k, i.e., p has the k-th smallest y-coordinate in
Su. Assume that p is in the subtree of ui for some i ∈ [B].
We assign k to category Pi(u). Meanwhile, k is associated
with two labels ℓrank(k, i) and ℓy(k, i). Specifically, ℓrank(k, i)
is the u-rank of the maximum weight in Y (Sui

, p), while
ℓy(k, i) is set to |Y (Sui

, p)|. In the sequel, when referring
to a label, we will omit the category if it can be inferred
from the context. For example, ℓrank(k, i) and ℓy(k, i) will
be abbreviated as ℓrank(k) and ℓy(k), respectively.

Λu is created on a special bundle that has only a single
category with domain size Ku. Each k ∈ [Ku] has a label
ℓp-rank(k) that equals the ρ(u)-rank of w, where w is the k-th
smallest weight in Su. Finally, for each point p ∈ S in a leaf
node z of T , we store the ρ(z)-rank of w(p) along with p.

Query. To answer a query Q : [x1, x2]× (−∞, y], our algo-
rithm first executes a downward step, followed by an upward
step. In the downward step, we traverse (at most) two root-
to-leaf paths, and compute a candidate weight at each node
accessed. The upward step then ascends the same paths to
merge those candidate weights into the final result.

The downward phase maintains an invariant:

Prior to accessing a node u, we should have ob-
tained the number C(u) of points in Su whose
y-coordinates are no greater than y.

At the beginning, C(root(T )) is the total number of points
in S with y-coordinates at most y, and can be determined
in O(logB N) I/Os using a B-tree. In general, let u be an
internal node being accessed. Naturally, u corresponds to an
interval I(u) ⊆ R, which encloses all the real values that may
reside in the subtree of u. Let u1, ..., uB be the child nodes of
u. Assume that x1 and x2 are covered by I(uα) and I(uβ),
respectively (we assume that both α and β exist; otherwise,
the algorithm can be modified in a straightforward manner).
Perform a bundled-predecessor query with search key C(u)
on Γu, which returns a pair of labels (lrank[i], ly[i]) for each
category Pi(u) (i ∈ [B]). Set γ(u) = maxα<i<β lrank[i]. In
case β <= α+ 1, γ(u) = 0. Note that γ(u) is the u-rank of
the maximum weight of the points in (Suα+1

∪...∪Suβ−1
)∩Q.

Setting C(uα) = ly[α] and C(uβ) = ly[β], we descend to uα

and uβ , respectively. The downward step terminates when
the leaf level is reached.

The upward step also keeps an invariant:

Prior to backtracking from u to ρ(u), γ(u) must
be equal to the ρ(u)-rank of the maximum weight
in Su ∩Q.

This step starts from the (at most) two leaf nodes where
the downward phase ended. For each such leaf node z, sim-
ply check all the points in Sz ∩ Q, and set γ(z) to the
ρ(z)-rank of the maximum weight of those points (recall
that the ρ(z)-rank is explicitly stored in z). In general,
consider that the upward step has backtracked to an in-
ternal node u from two child nodes uα and uβ . We up-
date γ(u) = max{γ(u), γ(uα), γ(uβ)}. Note that γ(u) now
equals the u-rank of the maximum weight w in Su ∩ Q. So
if u = root(T ), γ(u) can be used to restore w in O(logB N)
I/Os with a B-tree. Otherwise, γ(u) needs to be converted
to the ρ(u)-rank of w. For this purpose, we query Λu using
γ(u) as the search key, and set γ(u) to the label retrieved
from Λu. The algorithm then backtracks to ρ(u).

As O(logB N) I/Os are performed to search the BCB-trees
at each level of T , the query complexity is O(log2

B N).

4.2 The improved structure
To obtain logarithmic query cost, we aim at spending

only constant I/Os at each level of T . Naturally, we resort
to fractional cascading, whose application, however, results
in super-linear space. To keep the space linear, we must
squeeze ω(B) pointers in a block. Fortunately, this can be
achieved this by utilizing BCB-trees for pointer compression.

Structure. We now clarify the necessary modification on
the structure of the previous subsection. Let u be an inter-
nal node T with child nodes u1, ..., uB . Recall that, in the
BCB-tree Γu, each k ∈ [Ku] has been associated with labels
ℓrank(k) and ℓy(k). We give it two more labels ℓc-addr(k) and
ℓaddr(k) defined as below. Assume that the point p ∈ Su with
|Y (Su, p)| = k is in the subtree of ui for some i ∈ [B]. If ui

is a leaf node, ℓc-addr(k) equals the address of ui. Otherwise,
ℓc-addr(k) is the address of the (unique) fat block v in Γui

such that I(v) covers ℓy(k) (recall that I(v) is the minimal
interval enclosing all the keys in v). As for ℓaddr(k), it is the
address of the fat block v in Λu whose I(v) covers ℓrank(k).
Specially, if u = root(T ), label ℓaddr(k) is unnecessary.

We also need to slightly augment Λu if ρ(u) 6= root(T ).
In Λu, each k ∈ [Ku] currently has only a label ℓp-rank(k).
We associate it with another label ℓp-addr(k), which equals
the address of the fat block v in Λρ(u) whose I(v) covers
ℓp-rank(k).

Finally, for each leaf node z of T , we augment each point
p in z with the address of the fat block v in Λρ(z) whose I(v)
covers the ρ(z)-rank of w(p).

Query. We continue to elaborate the changes to the query
algorithm. The downward step now maintains an extra in-
variant:



Prior to accessing an internal node u, we should
know the address of the fat block v in Γu whose
I(v) covers C(u). Denote that address as
AΓ(u).

At root(T ), we find AΓ(root(T )) by simply searching
Γu with C(root(T )) in O(logB N) I/Os. In general, given
AΓ(u), we proceed as follows at an internal node u with
child nodes u1, ..., uB. First, we retrieve, in O(1) I/Os (by
accessing the fat block of Γu at address AΓ(u) and its relay
set), directly the result of the bundled-predecessor query on
Γu with search key C(u). The result contains four labels
lrank[i], ly[i], lc-addr [i], laddr[i] for each Pi(u) (i ∈ [B]). As be-
fore, set γ(u) = maxα<i<β lrank[i] (see Section 4.1 for the
meanings of α and β). We also need to remember an ad-
dress AΛ(u) = laddr[i

∗], where i∗ = argmaxα<i<β lrank[i]
(in case β ≤ α + 1, AΛ(u) = ∅). Note that AΛ(u) refer-
ences the fat block v in Λu whose I(v) covers γ(u). At
this moment, we are ready to descend to uα and uβ, setting
AΓ(uα) = lc-addr [α] and AΓ(uβ) = lc-addr[β], respectively.

The upward step also keeps one more invariant:

Prior to backtracking from u to ρ(u) 6= root(T ),
AΛ(u) must have been set to the address of the
fat block v in Λρ(u) whose I(v) covers γ(u) (re-
view Section 4.1 for the meaning of γ(u) at this
stage).

This can be trivially done if z is a leaf node, where the
required address is explicitly stored. In general, suppose
we have backtracked to u from child nodes uα and uβ. If
u is the root of T , the algorithm continues in the way as
described in Section 4.1. Otherwise, as before, set γ(u) =
max{γ(u), γ(uα), γ(uβ)}; in case now γ(u) equals γ(uα) (or
γ(uβ)), we reset AΛ(u) to AΛ(uα) (or AΛ(uβ)). Then, we
retrieve, using O(1) I/Os directly the result of the bundled-
predecessor query on Λu with search key γ(u), i.e., a pair
of labels (lp-rank , lp-addr). After setting γ(u) = lp-rank and
AΛ(u) = lp-addr , we backtrack to ρ(u).

Analysis. The query cost is O(logB N) because O(1) I/Os
are spent at each level, except for root(T ) where O(logB N)
I/Os are performed. As for the space, T itself obviously
has linear size. The subsequent discussion will show that
the BCB-trees of all nodes at the same level of T occupy
O( N

B logB N
) space in total, which implies that all the sec-

ondary structures require only linear space.

Consider an internal node u with child nodes u1, ..., uB . It
suffices to prove that (i) Γu, and (ii) Λu1

, ...,ΛuB
together

consume O( Ku

B logB N
) space. Let us first observe a trivial

space bound of O(Ku/B) for both (i) and (ii).

In Γu, each k ∈ [Ku] is associated with labels: ℓrank(k),
ℓy(k), ℓc-addr(k), and ℓaddr(k). It is easy to see that
ℓrank(k) ∈ [Ku], and ℓaddr(k) belongs to a domain of size
O(Ku/B). As the space of Γu1

, ...,ΓuB
is bounded by

O(Ku1
/B), ..., O(KuB

/B) respectively, ℓc-addr(k) falls in a
domain of size

∑

i O(Kui
/B) = O(Ku/B). Similarly, ℓy(k)

is in a domain of size maxi O(Kui
) = O(Ku). Therefore, by

Lemma 3.1, the space of Γu is bounded by O( Ku

B logB N
).

In Λui
(i ∈ [B]), each k ∈ [Kui

] is associated with two
labels: ℓp-rank(k) and ℓp-addr(k). Clearly, ℓp-rank(k) ∈ [Ku]

and ℓp-addr(k) belongs to a domain of size O(Ku/B). Hence,
by Lemma 3.1, the space of all Λu1

, ...,ΛuB
is at most

O

(

∑

i

Kui

B logN

(

log
Ku

Kui

)

)

which, by Corollary 2.2, is bounded by O( Ku

B logB N
).

Construction. We will complete the proof of Theorem 1.1
by explaining how to build our structure in O(N

B
logB N)

I/Os, using B blocks of memory. The construction of T is
straightforward. Hence, we focus on the BCB-trees Γu and
Λu of the internal nodes u of T . Let u1, ..., uB be the child
nodes of u.

To create Λu, we arrange Su into a list Ju such that (i) the
points in Ju are sorted in ascending order of their weights,
and (ii) if u 6= root(T ), each point p ∈ Ju has a label equal
to the ρ(u)-rank of w(p). At root(T ), Jroot(T ) is obtained by

sorting in O(N
B
logB N) I/Os. In general, after Ju is ready,

we can produce Ju1
, ..., JuB

by partitioning Ju in O(Ku/B)
I/Os. Λu1

, ...,ΛuB
can then be built in O(Ku/B) I/Os by

a synchronous scan of Ju1
, ..., JuB

and, if u 6= root(T ), also
Λu. Totally, O(N/B) I/Os are performed at each non-root
level of T .

Γu is constructed in two phases. The first one arranges
Su into a list J ′

u where points are sorted in ascending order
of their y-coordinates. Each p ∈ J ′

u is associated with:

• a label σu(p) that equals the u-rank of the maximum
weight in Y (J ′

u, p);

• if u 6= root(T ), another label σ̂u(p) that equals the
ρ(u)-rank of the maximum weight in Y (J ′

u, p).

J ′
root(T ) can be computed in O(N

B
logB N) I/Os. First,

sort the points of Su by their weights, to obtain the u-rank
of w(p) for every p ∈ Su. Then, sort Su another time but
in ascending order of y-coordinates. Finally, scan Su in the
new sorted order. As we go, monitor the greatest u-rank λ
of all the points already seen, and assign λ to the σu(p) of
the last point p scanned.

In general, after J ′
u is available, J ′

u1
, ..., J ′

uB
can be gener-

ated in O(Ku/B) I/Os as follows:

1. Create an array MAPu of size Ku. For each j ∈ [Ku],
MAPu[j] equals the ui-rank of w(p), where p is the
point having the j-th smallest weight in Su, and ui

is the child node that contains p in its subtree. This
array can be obtained in O(Ku/B) I/Os by a scan of
Ju (which was produced in building Λu).

2. Divide J ′
u into J ′

u1
, ..., J ′

uB
with O(Ku/B) I/Os.

Points of each J ′
ui

are now in ascending order of y-
coordinates, but their σu and σ̂u labels are not ready
yet.

3. Scan each J ′
ui

(in its order) separately to decide the
σ̂ui

(p) of each p ∈ J ′
ui
. Specifically, during the scan,

we monitor the largest u-rank of the points already
encountered (the u-ranks were inherited from J ′

u), and
assign it to the σ̂ui

(p) of the last point p seen.



4. Go through J ′
u1
, ..., J ′

uB
and MAPu once to determine

all σui
(p), where p ∈ J ′

ui
and i ∈ [B]. For each J ′

ui
,

monitor the maximum σ̂ui
(p′) of all the points p′ ∈ J ′

ui

already seen. Use λi to represent that maximum. For
the last point p ∈ J ′

ui
scanned, set σui

(p) = MAPu[λi].
Synchronize the accesses to J ′

u1
, ..., J ′

uB
and MAPu

appropriately so that the entire process finishes in
O(Ku/B) I/Os.

Thus, the first phase performs O(N/B) I/Os for each level
of T , entailing O(N

B
logB N) I/Os overall.

The second phase constructs Γu bottom-up. If u1, ..., uB

are leaf nodes, Γu can be built by one scan of the leaf
level of Λu, while keeping u1, ..., uB in memory. Otherwise,
we create Γu in O(Ku/B) I/O by synchronously scanning
Γu1

, ...,ΓuB
, J ′

u1
, ..., J ′

uB
, and Λu (ignore Λu if u = root(T )).

The cost in either case is O(Ku/B) I/Os. Therefore, the sec-
ond step performs O(N/B) I/Os at each level of T , and thus,
O(N

B
logB N) I/Os in total.

5. SEGMENT-INTERSECTION-MAX
Let S be a set of N horizontal segments in R

2. Each
segment s ∈ S carries a weight w(s) ∈ N. Given a vertical
segment Q : x× [y1, y2], the goal is to report the maximum
weight of the segments in S intersecting Q.

Bundled 1-d window-max. Let V1, ..., Vb be b sets of
1-d points in R. Set K =

∑

i |Vi|. Each point p ∈ Vi is
associated with an integer weight w(p). Given an interval
[x1, x2] ⊆ R, a bundled window-max query reports, for each
i ∈ [b], the maximum weight of the points of Vi ∩ [x1, x2].

Lemma 5.1. For b = B1−ǫ (where ǫ is a constant satisfy-
ing 0 < ǫ < 1), there is a linear-space structure that answers
a bundled 1-d window-max query in O(logB K) I/Os. The
structure can be constructed in O(K/B) I/Os if all the points
in V1 ∪ ... ∪ Vb have been sorted.

Proof. Let V = V1∪...∪Vb. Build a B-tree T with fanout
f = Bǫ/2 on V . Each node u of T naturally corresponds
to an interval I(u) ⊆ R (defined in the same way as in
Section 4.1). At the leaf level, keep with each point p the
i such that p ∈ Vi. Consider u as an internal node of T
with child nodes u1, ..., uf . Let set Su include the points of
V in the subtree of u, and Su(i, j) = Sui

∪ ... ∪ Suj
where

1 ≤ i ≤ j ≤ f . For each such i, j, store an array A[i, j]
of size b, where the k-th (k ∈ [b]) entry A[i, j, k] equals the
maximum weight of the points in Su(i, j)∩Vk. These arrays
have no more than f2b = B values in total and hence can
be stored in 1 block.

Given a query interval [x1, x2], first initiate in memory a
size-b array γ with γ[k] = −∞ for all k ∈ [b]. Then, visit
two root-to-leaf paths of T to reach the leaf nodes z1, z2
such that x1 ∈ I(z1) and x2 ∈ I(z2). Let u be an internal
node accessed. Assume x1 ∈ I(uα) and x2 ∈ I(uβ) for
some α, β ∈ [f ]. In case α (β) does not exist, set it to 0
(f + 1). If β ≥ α + 2, retrieve array A[α + 1, β − 1], and
set γ[k] = max{γ[k], A[α+ 1, β − 1, k]} for each k ∈ [b]. At
z1 (the case of z2 is similar), if a point p ∈ Vk (for some
k ∈ [b]) has weight greater than γ[k], set γ[k] = w(p). The
final γ[1], ..., γ[b] are returned.

The total space is linear because each internal node of T
is associated with only one extra block. The height of T
is O(logB K). A query performs O(1) I/Os at each level,
resulting in O(logB K) I/Os overall. If V has been sorted,
T (as well as the arrays of the internal nodes) can be con-
structed bottom-up in O(K/B) I/Os.

Segment-intersection-max. Our structure is similar to
the external interval tree of [9], but with two main differ-
ences. First, the base structure T has an (internal) fanout

f = B1/4. Second, the secondary structures of the nodes in
T are the indexes developed earlier in this paper.

Specifically, T is a B-tree on the x-coordinates of the end-
points of the segments in S. Associate each endpoint with
the segment it belongs to. As before, each node u of T natu-
rally corresponds an interval I(u), which in the context here
represents a vertical slab I(u) in R

2. Assign each segment
s ∈ S to the lowest node u whose I(u) covers s. Denote by
Gu the set of segments assigned to u.

Let u1, ..., uf be the child nodes of u. Define a multi-slab
I(u[i, j]) = I(ui)∪...∪I(uj ) for i, j satisfying 1 ≤ i ≤ j ≤ f .
Process each segment s ∈ Gu as follows. Let α, β be such
that I(uα) and I(uβ) contain the left and right endpoints
of s, respectively. Then:

• If β ≥ α+2, add the y-coordinate of s to a set Gu(α+
1, β − 1), after associating the coordinate with w(s).

• Insert the left and right endpoints of s to sets G=

u (α)
and G<

u (β) respectively, after associating both end-
points with w(s).

There are less than f2 =
√
B sets Gu(i, j) (1 ≤ i ≤ j ≤ f),

on which we create a structure Mu of Lemma 5.1. For each
i ∈ [f ], build a structure Lu(i) of Theorem 1.1 on G=

u (i) to
support 3-sided window-max queries whose search regions
have the form (−∞, x] × [y1, y2]. Symmetrically, construct
another structure Ru(i) on G<

u (i) to support queries of the
form [x,∞)× [y1, y2].

Each segment s ∈ S generates O(1) information in at
most 3 secondary structures. Since each secondary struc-
ture has linear size, the overall space is linear. To construct
the structure, we first build T , and then create the Gu of
each node u top-down in O(N

B
logB N) I/Os. After this, the

secondary structures are constructed in O(N
B
logB N) I/Os

(see Theorem 1.1 and Lemma 5.1).

To answer a query Q : x× [y1, y2], our algorithm initiates
a value γ = −∞, and then follows a root-to-leaf path of T
to the leaf node z whose I(z) covers x. Let u be an internal
node on the path. Let α ∈ [f ] be such that I(uα) covers x.
Perform a bundled window-max query [y1, y2] on Mu, which
reports a weight from each Gu(i, j) of all 1 ≤ i ≤ j ≤ f . Let
w1 be the maximum of the weights from the Gu(i, j) satisfy-
ing i ≤ α ≤ j. Next, perform a 3-sided window-max query
(−∞, x]× [y1, y2] on Lu(α), and a query [x,∞)× [y1, y2] on
Ru(α). Let w2 and w3 be their results, respectively. Set
γ = max{γ,w1, w2, w3}. Finally, at z, simply check all the
segments in z, and identify the maximum weight w of those
segments intersecting Q. Return max{w, γ} as the final re-
sult. By Theorem 1.1 and Lemma 5.1, O(logB N) I/Os are
performed at each level of T , resulting in O(log2B N) I/Os
overall.



Lemma 5.2. There is a linear-space structure that an-
swers a segment-intersection-max query in O(log2

B N) I/Os.
The structure can be constructed in O(N

B
logB N) I/Os.

6. STABBING-MAX
Let S be a set of N rectangles in R

2. Each rectangle r ∈ S
is associated with a weight w(r) ∈ N. Given a query point
Q : (x, y), the goal is to report the maximum w(r) of the
rectangles r ∈ S that cover Q.

6.1 Ray-segment-max
We first tackle the following ray-segment-max problem

that is a special instance of segment-intersection-max, and
lies at the heart of stabbing-max. Let H be a set of horizon-
tal segments in R

2. Each segment s ∈ H is associated with
a weight w(s) ∈ R. Given a vertical ray Q : x× (−∞, y], a
query reports the maximum w(s) of the segments s ∈ H in-
tersecting Q. We will solve the problem with a linear-space
structure that guarantees logarithmic query cost.

Structure. Our index combines the external segment tree
[7] with techniques developed in Sections 3 and 4. The base

tree T is a B-tree with fanout f =
√
B on the x-coordinates

of the endpoints of the segments in H . Each node u of T
corresponds to a vertical slab I(u) in R

2. We associate u
with a set Hu of segments s such that s has at least an
endpoint in I(u). Observe that s appears in the Hu of at
most two u at each level of T . If w is the λ-th smallest
weight (of the segments) in Hu, we say that the u-rank of
w is λ. At a leaf node z of T , associate each endpoint in z
with the segment s the endpoint belongs to, as well as the
ρ(z)-rank of w(s), where ρ(z) is the parent of z.

Given a segment-setX and a segment s (all horizontal), let
Y (X, s) be the set of segments in X whose y-coordinates are
at most that of s. Now consider u as an internal node with
u1, ..., uf as its child nodes. Define a multi-slab I(u[i, j]) =
I(ui) ∪ ... ∪ I(uj) for i, j satisfying 1 ≤ i ≤ j ≤ f . Let
Hu(i, j) be the set of segments s in Hu such that I(u[i, j])
is the maximal multi-slab spanned by s.

We build two BCB-trees Γu and Λu (only Γu if u is the
root of T ). Γu indexes a bundle of domain size Ku = |Hu|
with f(f+1)/2+f ≤ B categories (recall B ≥ 9). Precisely,
there is a category P multi

u (i, j) for each multi-slab I(u[i, j]),
and a category P slab

u (i) for each slab I(ui). Λu indexes a
bundle of domain size Ku with a single category.

Next, we clarify the labels in the BCB-trees, starting with
Γu. Consider a key k ∈ [Ku], and the segment s having the
k-th smallest y-coordinate in Hu. We decide the categories
and labels of k as follows:

• If the left endpoint of s falls in the I(uα) of some α,
assign k to P slab

u (α) with two labels. The first one ℓy(k)
equals |Y (Huα , s)|. The second ℓc-addr(k) references
the fat block v in Γui

whose I(v) covers ℓy(k). Repeat
the same with respect to the right endpoint of s.

• If s ∈ Hu(α, β) for some α and β, assign k to
P multi
u (α, β) also with two labels. The first one ℓrank(k)

equals the u-rank of the maximum weight of the points
in Y (Hu(α, β), s). The second ℓaddr(k) references the
fat block v in Λu whose I(v) encloses ℓrank(k).

Finally, in Λu, every k ∈ [Ku] has two labels:

• ℓp-rank(k), which equals the ρ(u)-rank of the k-th small-
est weight in Hu;

• ℓp-addr(k), which references the fat block v in Λρ(u)

whose I(v) contains ℓp-rank(k). If ρ(u) is the root,
ℓp-addr(k) is undefined.

Query. The query algorithm involves a downward step and
an upward step. Given a ray Q : x × (−∞, y], the down-
ward step searches a root-to-leaf path Π to reach the leaf
node z such that x ∈ I(z). Let u be an internal node on
Π, uα (α ∈ [f ]) the child node of u on Π, and C(u) the
number of segments in Hu whose y-coordinates are at most
y. Perform a bundled-predecessor query on Γu with C(u).
Let P multi

u (i∗, j∗) be the category whose ℓrank-label retrieved
by the query is the largest among all categories P multi

u (i, j)
satisfying i ≤ α ≤ j. Set γ(u) to that label, and AΛ(u) to
the retrieved ℓaddr-label of P

multi
u (i∗, j∗). Before descending

to uα, set C(uα) and AΓ(uα) to the ℓy- and ℓc-addr-labels
fetched from category P slab

u (α), respectively. With C(uα)
and AΓ(uα), the bundled-predecessor query on Γuα can be
answered in O(1) I/Os. In other words, only Γroot(T ) is
searched completely.

The upward step starts from z, and follows the same path
back to the root. Along the way, we make use of the γ(u),
AΛ(u), and Λu of each internal node u ∈ Π to determine the
answer in the way explained in Section 4.2.

Analysis. The key to proving the linear size of our structure
is to show that all the BCB-trees require linear space in total.
We focus on Γu (where u is a node of T ) because the analysis
of Λu is the same as in Theorem 1.1. It suffices to argue that
Γu occupies O( Ku

B logB N
) space. Let u1, ..., uf (f ≤

√
B) be

the child nodes of u. Each key k ∈ [Ku] indexed by Γu is
assigned to constant categories. Hence, the total number of
keys of all categories is O(Ku). Γu has four types of labels:
ℓrank(k), ℓy(k), ℓc-addr(k), and ℓaddr(k). We know:

• ℓrank(k) ∈ [Ku];

• the domain of ℓy(k) has size
∑

i Kui
= O(Ku);

• the domain of ℓc-addr(k) has size
∑

i O(Kui
/B) =

O(Ku/B);

• the domain of ℓaddr(k) has size O(Ku/B).

By Lemma 3.1, Γu occupies O(Ku log f
B logN

) = O( Ku

B logB N
)

space.

A query performs O(logB N) I/Os at the root of T , and
O(1) I/Os at every other level. The construction algorithm
in Theorem 1.1 can be adapted to build the structure in
O(N

B
logB N) I/Os. Omitting the tedious details, we con-

clude:

Lemma 6.1. There is a linear-space structure that an-
swers a ray-segment-max query in O(logB N) I/Os. The
structure can be built in O(N

B
logB N) I/Os.



6.2 Stabbing-max
Assume that the ray-segment-max problem can be settled

by a linear-space structure that has query cost TQ(N,B),
and can be built in Tbuild(N,B) I/Os. Agarwal et al. [3]
showed how to obtain a linear-space structure that answers
a stabbing-max query in O(Tquery(N,B) logB N + log2B N)
I/Os, and takes O(Tbuild(N,B) + N

B
logB N) I/Os to con-

struct. Combining their technique with Lemma 6.1 gives:

Lemma 6.2. There is a linear-space structure that an-
swers a stabbing-max query in O(log2

B N) I/Os. The struc-
ture can be built in O(N

B
logB N) I/Os.

Theorem 1.2 can now be established from the reduction
in Section 2, the window-max result of [3], and Lemmas 5.2
and 6.2.

7. RECTANGLE-INTERSECTION-SUM
Let S be a set of N points in R

2. Each point p ∈ S
is associated with a weight w(p) ∈ N. Given a 2-sided
rectangle Q : (−∞, x] × (−∞, y], the goal is to find the
sum of the weights of all the points covered by Q. Once
the above 2-sided window-sum problem is settled, rectangle-
intersection-sum can be solved with asymptotically the same
space, query, and preprocessing cost (see [12]).

Structure. The base tree of our structure is still a B-tree
T on the x-coordinates of the points in S. Define root(T ),
Y (X, p), Ku, Su and I(u) (where u is a node in T ) as in
Section 4. Consider an internal node u with child nodes
u1, ..., uB . We associate u with a BCB-tree Γu indexing a
bundle {P1(u), ..., PB(u)} with domain size Ku. Key k ∈
[Ku] is assigned to category Pi(u) if the point p, which has
the k-th smallest y-coordinate in Su, is in the subtree of
ui for some i ∈ [B]. We assign to k three labels ℓsum(k),
ℓy(k), and ℓc-addr(k), where ℓsum(k) is the sum of the weights
in Y (Sui

, p), and both ℓy(k) and ℓc-addr(k) are as defined in
Section 4.

Query. We answer a query with Q : (−∞, x] × (−∞, y]
by accessing a root-to-leaf path of T . The algorithm keeps
an invariant that, prior to visiting a node u, we know (i)
the number C(u) of points in Su whose y-coordinates are at
most y, and (ii) the address A(u) of the fat block v in Γu

whose I(v) covers C(u). C(root(T )) and A(root(T )) can be
obtained in O(logB N) I/Os as in Section 4.

The algorithm maintains at any moment the current result
γ, which equals 0 at the beginning. Assume, in general,
that we are visiting a node u. If u is a leaf node, simply
add to γ the total weight of all the points in u that fall
in Q. The final γ is then returned. For an internal u, let
u1, ..., uB be the child nodes of u, and α an integer such that
x ∈ I(uα). In a constant number of I/Os, we (utilizing A(u))
answer the bundled-predecessor query on Γu with search key
C(u). The result contains a label-set (lsum[i], ly[i], lc-addr [i]),
retrieved from category Pi(u), for each i ∈ [B]. We increase
γ by

∑α−1
i=1 lsum[i]. After setting C(uα) to ly[α] and A(uα) to

lc-addr [α], the algorithm descends to uα.

Analysis. It is easy to see that the query cost is O(logB N).
As for space consumption, we focus on bounding the size of

BCB-trees. Our analysis below utilizes the fact that W ,
which is the total weight of all the objects in S, is NO(1), as
each weight fits in a constant number of words.

Consider an internal node u with child nodes u1, ..., uB .
Γu has three types of labels ℓsum(k), ℓy(k), and ℓc-addr(k). Let
Wu be the sum of the weights of all the points in Su. Each
ℓsum(k) is in a domain with size

∑

i Wui
= Wu. The sizes

of the domains for ℓy(k) and ℓc-addr(k) are as explained in
Section 4.2. By Lemma 3.1, Γu occupies O( Ku

B logN
(log Wu

Ku
+

logB)) space.

Consider any particular level of T , and denote by X the
set of all nodes at this level. The space of the BCB-trees
associated with the nodes in X is

O

(

∑

u∈X

Ku

B logN

(

log
Wu

Ku
+ logB

)

)

= O

(

1

B logN

(

∑

u∈X

(

Ku log
Wu

Ku

)

+ logB
∑

u∈X

Ku

))

.

As
∑

u∈X Ku = N and
∑

u∈X Wu = W , Lemma 2.1 shows
that the above equation is bounded by

O

(

1

B logN

(

N log
W

N
+N logB

))

= O

(

N max{1, logB W
N
}

B logB N

)

.

Hence, the BCB-trees at all O(logB N) levels of T con-
sume totally O(N

B
max{1, logB W

N
}) space. Our structure

can be easily constructed bottom-up in O(N
B
logB N) I/Os.

This proves Theorem 1.3.
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