Lecture Notes: Flajolet-Martin Sketch

Yufei Tao
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

12 Feb, 2012

1 Distinct element counting problem

Let S be a multi-set of N integers, namely, two elements of S may be identical. Each integer is in the range of $[0, D]$ where D is some polynomial of N. The distinct element counting problem is to find out exactly how many distinct elements there are in S. We will use F to denote the answer. For example, given $S=\{1,5,10,5,15,1\}, F=4$.

Clearly, using $O(N)$ words of space, the problem can be solved easily in $O(N \log N)$ time by sorting, or $O(N)$ expected time with hashing. In many applications, however, the amount of space at our disposal can be much smaller. In this lecture, we consider that we are allowed only $O(\log N)$ bits. Hence, our goal is to obtain an approximate answer \tilde{F} whose accuracy has a probabilistic guarantee.

We will learn a structure proposed by Flajolet and Martin [2] that can achieve this purpose by seeing each element of S only once. We will name the structure the $F M$-sketch after the inventors. Let w be the smallest integer such that $2^{w} \geq N$, that is, $\lceil w=\log N\rceil$. For simplicity, we assume that there is an ideal hash function h which maps each integer $k \in S$ independently to a hash value $h(k)$ that is distributed uniformly in $\left[0,2^{w}-1\right]$.

2 FM-sketch

Each integer k in $\left[0,2^{w}-1\right]$ can be represented with w bits. We will use z_{k} to denote the number of leading 0 's (counting from the left) in the binary form of the hash value $h(k)$ of k. For example, if $w=5$ and $h(k)=6=(00110)_{2}$, then $z_{k}=2$ because there are two 0 's before the leftmost 1 . The FM sketch is simply an integer Z defined as:

$$
\begin{equation*}
Z=\max _{k \in S} z_{k} . \tag{1}
\end{equation*}
$$

Clearly, Z can be obtained by seeing each element k once: simply calculate z_{k}, update Z accordingly, and then discard k. Note that the z_{k} of all $k \in S$ are independent. Also obvious is the fact that Z can be stored in $w=O(\log N)$ bits. After Z has been computed, we simply return

$$
\tilde{F}=2^{Z}
$$

as our approximate answer.

3 Analysis

This section will prove the following property of the FM sketch:
Proposition 1. For any integer $c>3$, the probability that $\frac{1}{c} \leq \frac{\tilde{F}}{F} \leq c$ is at least $1-\frac{3}{c}$.

Our proof is based on [1]. We say that our algorithm is correct if $\frac{1}{c} \leq \frac{\tilde{F}}{F} \leq c$ (i.e., our estimate \tilde{F} is off by at most a factor of c, from either above or below). The above proposition indicates that our algorithm is correct with at least a constant probability $1-\frac{3}{c}>0$.

Lemma 1. For any integer $r \in[0, w], \operatorname{Pr}\left[z_{k} \geq r\right]=\frac{1}{2^{r}}$.
Proof. Note that $z_{k} \geq r$ means that the hash value $h(k)$ of k is between $\underbrace{0 \ldots 0}_{r} \underbrace{0 \ldots 0}_{w-r}$ and $\underbrace{0 \ldots 0}_{r} \underbrace{1 \ldots 1}_{w-r}$, namely, between 0 and $2^{w-r}-1$. Remember that $h(k)$ is uniformly distributed from 0 to $2^{w}-1$. Hence:

$$
\operatorname{Pr}\left[z_{k} \geq r\right]=\frac{2^{w-r}}{2^{w}}=\frac{1}{2^{r}} .
$$

Let us fix an r. For each $k \in S$, define:

$$
x_{k}(r)= \begin{cases}1 & \text { if } z_{k} \geq r \\ 0 & \text { otherwise }\end{cases}
$$

By Lemma 1, we know that $x_{k}(r)$ takes 1 with probability $1 / 2^{r}$. Hence:

$$
\begin{align*}
\mathbf{E}\left[x_{k}(r)\right] & =1 / 2^{r} \tag{2}\\
\operatorname{var}\left[x_{k}(r)\right] & =\frac{1}{2^{r}}\left(1-\frac{1}{2^{r}}\right) \tag{3}
\end{align*}
$$

Also define:

$$
X(r)=\sum_{\text {distinct } k \in S} x_{k}(r)
$$

Let:

$$
\begin{aligned}
& r_{1}=\text { the smallest } r \text { such that } 2^{r}>c F \\
& r_{2}=\text { the smallest } r \text { such that } 2^{r} \geq \frac{F}{c}
\end{aligned}
$$

Lemma 2. Our algorithm is correct if $X\left(r_{1}\right)=0$ and $X\left(r_{2}\right) \neq 0$.
Proof. Our algorithm is correct if Z as given in (1) satisfies $r_{2} \leq Z<r_{1}$, due to the definitions of r_{1} and r_{2}. If $X\left(r_{1}\right)=0$, it means that no $k \in S$ gives an $z_{k} \geq r_{1}$; this implies $Z<r_{1}$ (see again (1)). Likewise, if $X\left(r_{2}\right) \neq 0$, it means that at least one $k \in S$ gives an $z_{k} \geq r_{2}$; this implies $Z \geq r_{2}$.

Next, we will prove that the probability of having " $X\left(r_{1}\right)=0$ and $X\left(r_{2}\right) \neq 0$ " is at least $1-3 / c$. Towards this, we will consider the complements of these two events, namely: $X\left(r_{1}\right) \geq 1$ and $X\left(r_{2}\right)=0$. We will prove that $X\left(r_{1}\right) \geq 1$ can happen with probability at most $1 / c$, whereas $X\left(r_{2}\right)=0$ can happen with probability at most $2 / c$. then it follows from the union bound that the probability of at least one of the two events happening is at most $3 / c$. This is sufficient for establishing Proposition 1.

Lemma 3. $\operatorname{Pr}\left[X\left(r_{1}\right) \geq 1\right]<1 / c$.

Proof.

$$
\begin{aligned}
\mathbf{E}\left[X\left(r_{1}\right)\right] & =\sum_{\text {distinct } k \in S} \mathbf{E}\left[x_{k}\left(r_{1}\right)\right] \\
(\text { by }(2)) & =F / 2^{r_{1}} \\
\text { (by definition of } \left.r_{1}\right) & <1 / c .
\end{aligned}
$$

Hence, by Markov inequality, we have:

$$
\operatorname{Pr}\left[X\left(r_{1}\right) \geq 1\right] \leq \mathbf{E}\left[X\left(r_{1}\right)\right]<1 / c .
$$

Lemma 4. $\operatorname{Pr}\left[X\left(r_{2}\right)=0\right]<2 / c$.
Proof. Same as the proof of the previous lemma, we obtain:

$$
\mathbf{E}\left[X\left(r_{2}\right)\right]=F / 2^{r_{2}}
$$

As $X\left(r_{2}\right)$ is the sum of F independent variables, each of which has variance $\frac{1}{2^{r}}\left(1-\frac{1}{2^{r}}\right)$ (see Equation 3), we know:

$$
\operatorname{var}\left[X\left(r_{2}\right)\right]=\frac{F}{2^{r_{2}}}\left(1-\frac{1}{2^{r_{2}}}\right)<\frac{F}{2^{r_{2}}} .
$$

Thus:

$$
\begin{aligned}
\operatorname{Pr}\left[X\left(r_{2}\right)=0\right] & =\operatorname{Pr}\left[X\left(r_{2}\right)-\mathbf{E}\left[X\left(r_{2}\right)\right]=\mathbf{E}\left[X\left(r_{2}\right)\right]\right] \\
& \leq \operatorname{Pr}\left[\left|X\left(r_{2}\right)-\mathbf{E}\left[X\left(r_{2}\right)\right]\right|=\mathbf{E}\left[X\left(r_{2}\right)\right]\right] \\
& \leq \operatorname{Pr}\left[\left|X\left(r_{2}\right)-\mathbf{E}\left[X\left(r_{2}\right)\right]\right| \geq \mathbf{E}\left[X\left(r_{2}\right)\right]\right] \\
\text { (by Chebyshev inequality) } & \leq \frac{\operatorname{var}\left[X\left(r_{2}\right)\right]}{\left(\mathbf{E}\left[X\left(r_{2}\right)\right]\right)^{2}} \\
& <\frac{F / 2^{r_{2}}}{\left(F / 2^{r_{2}}\right)^{2}} \\
& =\frac{2^{r_{2}}}{F}
\end{aligned}
$$

From the definition of r_{2}, we know that $2^{r_{2}}<2 F / c$ (otherwise, r_{2} would not be the smallest r satisfying $\left.2^{r} \geq F / c\right)$. Combining this with the above gives $\operatorname{Pr}\left[X\left(r_{2}\right)=0\right]<2 / c$.

4 Boosting the success probability

Proposition 1 shows that our estimate \tilde{F} is accurate up to a factor $c>3$ with probability at least $1-3 / c$. The success probability $1-3 / c$ does not look very impressive: ideally, we would like to be able to succeed with a probability arbitrarily close to 1 , namely, $1-\delta$ where $\delta>0$ can be arbitrarily small. It turns out that we are able to achieve this with a simple median trick for $c>6$.

Let us build s independent FM-sketches, each of which is constructed as explained in Section 2. The value of s will be determined later. From each FM-sketch, we obtain an estimate $\tilde{F}_{i}(1 \leq i \leq s)$ of F. We determine our final estimate \tilde{F} as the median of $\tilde{F}_{1}, \ldots, \tilde{F}_{s}$. Now we prove that this trick really works:

Theorem 1. For each constant $c>6$, there is an $s=O\left(\log \frac{1}{\delta}\right)$ ensuring that $\frac{F}{c} \leq \tilde{F} \leq c F$ happens with probability at least $1-\delta$.

Proof. For each $i \in[1, s]$, define $x_{i}=0$ if $\tilde{F}_{i} \in[F / c, c F]$, or 1 otherwise. From Proposition 1, we know that $\operatorname{Pr}\left[x_{i}=1\right]$ is at most $\rho=3 / c<1 / 2$. Clearly, $\mathbf{E}\left[x_{i}\right]=\rho$. Let

$$
X=\sum_{i=1}^{s} x_{i}
$$

Hence:

$$
\mathbf{E}[X]=s \rho
$$

If $X<s / 2$, then $\frac{F}{c} \leq \tilde{F} \leq c F$ definitely holds. To see this, consider $\tilde{F}>c F$. Since \tilde{F} is the median of $\tilde{F}_{1}, \ldots, \tilde{F}_{s}$, it follows that at least $s / 2$ of these estimates are above $c F$, contradicting $X<s / 2$. Likewise, \tilde{F} cannot be smaller than F / c either.

We will show that $X<s / 2$ happens with probability at least $1-\delta$. Towards this, we argue that the complement event $X \geq s / 2$ happens with probability at most δ. As x_{1}, \ldots, x_{s} are independent, we have:

$$
\begin{aligned}
\operatorname{Pr}[X \geq s / 2] & =\operatorname{Pr}[X-\mathbf{E}[X] \geq s / 2-\mathbf{E}[X]] \\
(\text { as } \mathbf{E}[X]=s \rho<s / 2) & \leq \operatorname{Pr}[|X-\mathbf{E}[X]| \geq s / 2-\mathbf{E}[X]] \\
& =\operatorname{Pr}[|X-\mathbf{E}[X]| \geq s / 2-s \rho] \\
& =\operatorname{Pr}\left[|X-\mathbf{E}[X]| \geq \frac{1 / 2-\rho}{\rho} \cdot s \rho\right] \\
\text { (by Chernoff bound) } & \leq 2 e^{-\frac{(1 / 2-\rho)^{2}}{3 \rho^{2}} s \rho} \\
& =2 e^{-\frac{s(1 / 2-\rho)^{2}}{3 \rho}}
\end{aligned}
$$

To make the above at most δ, we need

$$
s \geq \frac{3 \rho}{(1 / 2-\rho)^{2}} \ln \frac{2}{\delta}
$$

Hence. setting $s=\left\lceil\frac{3 \rho}{(1 / 2-\rho)^{2}} \ln \frac{2}{\delta}\right\rceil=O\left(\log \frac{1}{\delta}\right)$ fulfills the requirement.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments. Journal of Computer and System Sciences (JCSS), 58(1):137-147, 1999.
[2] P. Flajolet and G. N. Martin. Probabilistic counting. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 76-82, 1983.

