
Side Talk: Implementation of the AVL Tree

Tony Gong

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Side Talk: Implementation of the AVL Tree



In the same spirit as our discussions about the implementations of the
linked list and the binary heap, today we will look at the implementation
of the AVL Tree.

Given that we have already looked at the class definitions of two

pointer-based data structures, hopefully you will be used to the ideas by

now and the material presented here will come across as intuitive.

COMP3506/7505, Uni of Queensland Side Talk: Implementation of the AVL Tree



class TreeNode {

int key;

int leftSubtreeHeight;

int rightSubtreeHeight;

[Type of TreeNode Pointer] leftChild;

[Type of TreeNode Pointer] rightChild;

[Type of TreeNode Pointer] parent;

[Type of TreeNode Pointer] getLeftChild();

[Type of TreeNode Pointer] getRightChild();

[Type of TreeNode Pointer] getParent();

bool isLeaf();

};

The above models a node in our AVL tree. Notice that the only

difference of the above when compared to the HeapNode class used for a

binary heap is that we track the heights of the left and right subtrees.

COMP3506/7505, Uni of Queensland Side Talk: Implementation of the AVL Tree



class AVLTree {

[Type of TreeNode Pointer] root;

int predecessor(int k);

int successor(int k);

insert(int k);

delete(int k);

rebalance([Type of TreeNode Pointer] node);

};

The above is the class definition of an AVL tree. The dynamic insert

and delete operations are supported, as well as the predecessor and

successor queries. I have chosen to have a rebalance function that

takes a node as an argument and will traverse up the tree and rebalance

as necessary. This is to avoid code duplication between insert and

delete.

COMP3506/7505, Uni of Queensland Side Talk: Implementation of the AVL Tree



And that is all! Hopefully we have provided enough guidance in showing
one possible way of implementing the AVL tree data structure.

Implementation is more or less a question of organisation, and note that
there is often no right or wrong and the way presented here is not the
only way of structuring the code.

For example, the rebalance function operates on a node in our tree,

hence we could possibly move it out of the AVLTree class and into the

TreeNode class instead. I have elected to leave the TreeNode class

general instead of specific to the AVL Tree, but you may not care to do

so. When faced with design choices, exercise your best judgement!

COMP3506/7505, Uni of Queensland Side Talk: Implementation of the AVL Tree


