Applications of the Binary Search Tree

Junhao Gan

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree

Recall

A binary search tree (BST) on a set S of n integers is a binary tree T
satisfying all the following requirements:
@ T has n nodes.
@ Each node u in T stores a distinct integer in S, which is called the
key of u.
@ For every internal u, it hods that:

o The key of u is larger than all the keys in the left subtree of w.
o The key of u is smaller than all the keys in the right subtree of

u.

, Uni of Queensland Applications of the Binary Search Tree

Two possible BSTs on S = {3,11,12,15,18,29,40,41,47,68,71,92}:

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree

Recall

A binary tree T is balanced if the following holds on every internal node
uof T:

@ The height of the left subtree of u differs from that of the right
subtree of u by at most 1.

, Uni of Queensland Applications of the Binary Search Tree

, Uni of Queensland Applications of the Binary Search Tree

(Predecessor Query)

Let S be a set of integers. A predecessor query for a given integer g is to
find its predecessor in S, which is the largest integer in S that does not
exceed g.

, Uni of Queensland Applications of the Binary Search Tree

Suppose that S = {3,11,12,15,18,29,40,41,47,68,71,92} and we have
a balanced BST T on S:

We want to find the predecessor of g = 42 in S.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree

Predecessor query for g = 42:

@ Initialize p = —o0.
@ Initialize u < the root of T.
@ Now u.key =40 and p = —o0.

@ Since u.key < g, the
predecessor of g must be either
u or some node in the right
subtree of u.

@ Set p =40 and u < the right
child of u.

, Uni of Queensland Applications of the Binary Search Tree

Predecessor query for g = 42:

@ Since u.key > g, the
predecessor of g must be either
p or some node in the left
subtree of u.

@ Set u < the left child of u.

Uni of Queensland Applications of the Binary Search Tree

Predecessor query for g = 42:

@ Since u.key < g, the
predecessor of g must be either
u or some node in the right
subtree of w.

@ Set p =41 and u <« the right
child of u.

, Uni of Queensland Applications of the Binary Search Tree

Predecessor query for g = 42:

@ Since u.key > q, the
predecessor of g must be either
p or some node in the left
subtree of u.

@ Set u < the left child of w.

@ Since u is nil now, return
p = 41 as the predecessor of g
inS.

, Uni of Queensland Applications of the Binary Search Tree

(Successor Query)

Let S be a set of integers. A successor query for a given integer g is to
find its successor in S, which is the smallest integer in S that is no
smaller than q.

Uni of Queensland Applications of the Binary Search Tree

Successor query for g = 17 on S:

@ Initialize p = .
@ Initialize u + the root of T.
@ Now wu.key =40 and p = oc.

@ Since u.key > q, the successor
of g must be either u or some
node in the left subtree of u.

@ Set p =40 and u < the left
child of u.

, Uni of Queensland Applications of the Binary Search Tree

Successor query for g =17 on S:

wkey =15

=10 @ Since u.key < g, the successor

of g must be either p or some
node in the right subtree of w.

@ Set u « the right child of u.

Uni of Queensland Applications of the Binary Search Tree

Successor query for g = 17 on S:

@ Since u.key > g, the successor
of g must be either u or some
node in the left subtree of u.

u.key =29
p =40

@ Set p =29 and u « the left
child of u.

Uni of Queensland Applications of the Binary Search Tree

Successor query for g = 17 on S:

@ Since u.key > g, the successor
of g must be either u or some
node in the left subtree of u.

@ Set p =18 and u « the left
child of u.

@ Since u is nil now, return
p = 18 as the successor of g in

S.

ukey = 18
p=29

Uni of Queensland Applications of the Binary Search Tree

(Construction of a Balanced BST)

In the following, we will discuss how to construct a balanced BST T on a
given sorted set S of n integers in O(n) time.

Uni of Queensland Applications of the Binary Search Tree

(Construction of a Balanced BST)

@ Observation 1: The subtree of any node in a balanced BST is also
a balanced BST.

@ Observation 2: A BST of n nodes constructed by the following

form:
@,

balanced BST of | 251 | nodes balanced BST of [231] nodes

2

is a balanced BST.

, Uni of Queensland Applications of the Binary Search Tree

(Construction of a Balanced BST)

Assume that the sorted set S of n integers is stored in an array with
length n. A balanced BST on S can be constructed as follows:

@ Base Case:

o If n=0, return nil.
o If n=1, create a node u with key A[1] and return the pointer
of u as the root of a balanced BST on A.

@ Inductive Case:

o Pick the median of A (i.e., A[[5]]) and create a node u for it.

o Recursively construct a balanced BST on the portion of A
positioned before the median, and set its root as the left child
of u.

o Recursively construct a balanced BST on the portion of A
positioned after the median, and set its root as the right child
of u.

e Return the pointer of u.

, Uni of Queensland Applications of the Binary Search Tree

(Construction of a Balanced BST)

Let (n) be the maximum running time for constructing a balanced BST
from an array of length n. Without loss of generality, suppose that n is a
power of 2. We have:

f(1) = O(1)
f(n)=0(1)+2-f(n/2)

Solving the recurrence gives f(n) = O(n).

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree

Let us construct a balanced BST T on a sorted set
S5 ={3,11,12,15,18,29,40,41,47,68,71,92} by the above algorithm.
Suppose that S is stored in an array A of length 12.

(3]1]12

15

18] 20] 40] 41[47 68] 71] 92]

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree

(Range Count Problem)

Let S be a set of n integers. Given two integers a and b such that a < b,
a range count query for the range [a, b] is to find the number of integers
in S which are in the range of [a, b].

In the following, we will discuss how to augment a balanced BST on S to
achieve:
@ O(n) space consumption,

@ O(log n) time for each query.

, Uni of Queensland Applications of the Binary Search Tree

(Range Count Problem)

We augment a balanced BST T on S by storing one additional
information in each node u that is:

@ the number of nodes in the subtree of wu.

For example,

cnt =12
ent =5 cnt =6

ent =2 cnt =2 cent = 2 cent =3

(19 6 @)

ent =1 ent =1 ent=1 ent=1ent =1

Uni of Queensland Applications of the Binary Search Tree

(Range Count Problem)

Before describing the query algorithm, introduce some concepts:

@ Left-Hanging Node: Consider a path P(u, v) from an ancestor u to
a node v, if a node w is a left child node of some node on P(u,v)
and w is not on P(u,v), then w is called a left-hanging node of
P(u,v).

For example, consider a path P(47,68), the node with key 40 is a
left-hanging node of P(47,68), while the node with key 68 is not.

cnt =12

ent =5 %("f—ﬁ
(m_zg é(m‘—Z@— 2%(7”‘— 3

ent =1 ent = ent=1 ent=1ent =1

%

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree

(Range Count Problem)

@ Right-Hanging Node: Consider a path P(u, v) from an ancestor u
to a node v, if a node w is a right child node of some node on
P(u,v) and w is not on P(u,v), then w is called a right-hanging
node of P(u,v).

For example, consider a path P(29, 3), the nodes with keys 11, 15,47 are
right-hanging nodes of P(29, 3).

cnt =12

ent =1 ent =1 ent=1 ent=1ent =1

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree

(Range Count Problem)

@ Lowest Common Ancestor: Let t be the root. The lowest common
ancestor of nodes v; and v, is the lowest node that is on both of
the paths P(t,v1) and P(t, v»).

For example, the lowest common ancestor of node with key 3 and node
with key 15 is the node with key 12.

@cnt =12

, Uni of Queensland Applications of the Binary Search Tree

(Range Count Problem)

For a range [a, b] (e.g. [2,48]), let s be the successor of a, p the
predecessor of b and u the lowest common ancestor of s and p. Let wy
and w, be the left child and right child of u.

)
2 48

The purple nodes are the right-hanging nodes of P(wy,s) and the orange
node is the left-hanging nodes of P(w,, p). Observe that all the nodes in
the subtrees of these left- and right-handing nodes are in the range
[2,48].

, Uni of Queensland Applications of the Binary Search Tree

(Range Count Problem)

ot =5 2\ P rnf,:ﬁ

ent =2 (D ‘\170/ Nent = 40 cnt = cnt =3
NS
ent =1 ent =1 ent=1 ent=1cnt =1
L I}
2 48

Therefore, the number ¢ of nodes of T in the range [2, 48] can be
computed by:

@ Initialize c = 1.

@ Increase c by the number of nodes on P(wy,s) and P(ws, p) whose
keys are in [2,48].

@ For each right-hanging node v of P(wj,s), increase c by the
counter of v.

@ For each left-hanging node v of P(ws, p), increase ¢ by the counter
of v.

242 =20

Applications of the Binary Search Tree

(Range Count Problem)

The range count query algorithm for a given range [a, b]:

Find the successor s of a and the predecessor p of b.

Identify the lowest common ancestor v of s and p. Let wy and ws
be the left and right child nodes of u.

Initialize ¢ = 1.

Increase ¢ by the number of nodes on P(wi,s) and P(wa, p) whose
keys are in [a, b].

Walk along the path P(wy,s), for each right-hanging node v,
increase ¢ by the counter of v.

Walk along the path P(ws, p), for each left-hanging node v,
increase ¢ by the counter of v.

Return c.

The time complexity of the above query algorithm is O(log n).

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree

Besides the range count problem, we can also augment a balanced BST
on S to solve the following two interesting problems:

@ Range Sum Problem: Given two integers a and b such that a < b, a
range sum query for the range [a, b] is to find the sum of the
integers in S which are in the range of [a, b].

@ Range Max Problem: Given two integers a and b such that a < b, a
range max query for the range [a, b] is to find the max of the
integers in S which are in the range of [a, b].

Think: How?

, Uni of Queensland Applications of the Binary Search Tree

