
Applications of the Binary Search Tree

Junhao Gan

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Recall

A binary search tree (BST) on a set S of n integers is a binary tree T
satisfying all the following requirements:

T has n nodes.

Each node u in T stores a distinct integer in S , which is called the
key of u.

For every internal u, it hods that:

The key of u is larger than all the keys in the left subtree of u.
The key of u is smaller than all the keys in the right subtree of
u.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Example

Two possible BSTs on S = {3, 11, 12, 15, 18, 29, 40, 41, 47, 68, 71, 92}:

18 47 713 12

11 29 41 92

15 68

40
92

71

68

15

18

47

3

11

12

41

40

29

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Recall

A binary tree T is balanced if the following holds on every internal node
u of T :

The height of the left subtree of u differs from that of the right
subtree of u by at most 1.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Example

18 47 713 12

11 29 41 92

15 68

40
92

71

68

15

18

47

3

11

12

41

40

29

The BST on the left is balanced, while the one on the right is not.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Predecessor Query

Let S be a set of integers. A predecessor query for a given integer q is to

find its predecessor in S , which is the largest integer in S that does not

exceed q.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Example

Suppose that S = {3, 11, 12, 15, 18, 29, 40, 41, 47, 68, 71, 92} and we have
a balanced BST T on S :

18 47 713 12

11 29 41 92

15 68

40

We want to find the predecessor of q = 42 in S .

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Example

Predecessor query for q = 42:

18 47 713 12

11 29 41 92

15 68

40
u.key = 40
p = −∞

Initialize p = −∞.

Initialize u ← the root of T .

Now u.key = 40 and p = −∞.

Since u.key < q, the
predecessor of q must be either
u or some node in the right
subtree of u.

Set p = 40 and u ← the right
child of u.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Example

Predecessor query for q = 42:

18 47 713 12

11 29 41 92

15 68

40

u.key = 68
p = 40

Since u.key > q, the
predecessor of q must be either
p or some node in the left
subtree of u.

Set u ← the left child of u.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Example

Predecessor query for q = 42:

18 47 713 12

11 29 41 92

15 68

40

u.key = 41
p = 40

Since u.key < q, the
predecessor of q must be either
u or some node in the right
subtree of u.

Set p = 41 and u ← the right
child of u.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Example

Predecessor query for q = 42:

18 47 713 12

11 29 41 92

15 68

40

u.key = 47
p = 41

Since u.key > q, the
predecessor of q must be either
p or some node in the left
subtree of u.

Set u ← the left child of u.

Since u is nil now, return
p = 41 as the predecessor of q
in S .

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Successor Query

Let S be a set of integers. A successor query for a given integer q is to

find its successor in S , which is the smallest integer in S that is no

smaller than q.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Example

Successor query for q = 17 on S :

18 47 713 12

11 29 41 92

15 68

40
u.key = 40
p = ∞

Initialize p =∞.

Initialize u ← the root of T .

Now u.key = 40 and p =∞.

Since u.key > q, the successor
of q must be either u or some
node in the left subtree of u.

Set p = 40 and u ← the left
child of u.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Example

Successor query for q = 17 on S :

18 47 713 12

11 29 41 92

15 68

40

u.key = 15
p = 40 Since u.key < q, the successor

of q must be either p or some
node in the right subtree of u.

Set u ← the right child of u.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Example

Successor query for q = 17 on S :

18 47 713 12

11 29 41 92

15 68

40

u.key = 29
p = 40

Since u.key > q, the successor
of q must be either u or some
node in the left subtree of u.

Set p = 29 and u ← the left
child of u.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Example

Successor query for q = 17 on S :

18 47 713 12

11 29 41 92

15 68

40

u.key = 18
p = 29

Since u.key > q, the successor
of q must be either u or some
node in the left subtree of u.

Set p = 18 and u ← the left
child of u.

Since u is nil now, return
p = 18 as the successor of q in
S .

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Construction of a Balanced BST

In the following, we will discuss how to construct a balanced BST T on a

given sorted set S of n integers in O(n) time.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Construction of a Balanced BST

Observation 1: The subtree of any node in a balanced BST is also
a balanced BST.

Observation 2: A BST of n nodes constructed by the following
form:

balanced BST of ⌊n−1
2 ⌋ nodes balanced BST of ⌈n−1

2 ⌉ nodes

is a balanced BST.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Construction of a Balanced BST

Assume that the sorted set S of n integers is stored in an array with
length n. A balanced BST on S can be constructed as follows:

Base Case:

If n = 0, return nil.
If n = 1, create a node u with key A[1] and return the pointer
of u as the root of a balanced BST on A.

Inductive Case:

Pick the median of A (i.e., A[b n2c]) and create a node u for it.
Recursively construct a balanced BST on the portion of A
positioned before the median, and set its root as the left child
of u.
Recursively construct a balanced BST on the portion of A
positioned after the median, and set its root as the right child
of u.
Return the pointer of u.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Construction of a Balanced BST

Let f (n) be the maximum running time for constructing a balanced BST
from an array of length n. Without loss of generality, suppose that n is a
power of 2. We have:

f (1) = O(1)

f (n) = O(1) + 2 · f (n/2)

Solving the recurrence gives f (n) = O(n).

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Example

Let us construct a balanced BST T on a sorted set
S = {3, 11, 12, 15, 18, 29, 40, 41, 47, 68, 71, 92} by the above algorithm.
Suppose that S is stored in an array A of length 12.

3 11 12 15 18 40 41 47 68 71 9229

29

12

3

11

15

18

47

40

41

71

68 92

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Range Count Problem

Let S be a set of n integers. Given two integers a and b such that a ≤ b,
a range count query for the range [a, b] is to find the number of integers
in S which are in the range of [a, b].

In the following, we will discuss how to augment a balanced BST on S to
achieve:

O(n) space consumption,

O(log n) time for each query.

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Range Count Problem

We augment a balanced BST T on S by storing one additional
information in each node u that is:

the number of nodes in the subtree of u.

For example,

29

12

3

11

15

18

47

40

41

71

68 92

cnt = 12

cnt = 5

cnt = 2 cnt = 2 cnt = 2 cnt = 3

cnt = 6

cnt = 1 cnt = 1cnt = 1cnt = 1cnt = 1

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Range Count Problem

Before describing the query algorithm, introduce some concepts:

Left-Hanging Node: Consider a path P(u, v) from an ancestor u to
a node v , if a node w is a left child node of some node on P(u, v)
and w is not on P(u, v), then w is called a left-hanging node of
P(u, v).

For example, consider a path P(47, 68), the node with key 40 is a
left-hanging node of P(47, 68), while the node with key 68 is not.

29

12

3

11

15

18

47

40

41

71

68 92

cnt = 12

cnt = 5

cnt = 2 cnt = 2 cnt = 2 cnt = 3

cnt = 6

cnt = 1 cnt = 1cnt = 1cnt = 1cnt = 1

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Range Count Problem

Right-Hanging Node: Consider a path P(u, v) from an ancestor u
to a node v , if a node w is a right child node of some node on
P(u, v) and w is not on P(u, v), then w is called a right-hanging
node of P(u, v).

For example, consider a path P(29, 3), the nodes with keys 11, 15, 47 are
right-hanging nodes of P(29, 3).

29

12

3

11

15

18

47

40

41

71

68 92

cnt = 12

cnt = 5

cnt = 2 cnt = 2 cnt = 2 cnt = 3

cnt = 6

cnt = 1 cnt = 1cnt = 1cnt = 1cnt = 1

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Range Count Problem

Lowest Common Ancestor: Let t be the root. The lowest common
ancestor of nodes v1 and v2 is the lowest node that is on both of
the paths P(t, v1) and P(t, v2).

For example, the lowest common ancestor of node with key 3 and node
with key 15 is the node with key 12.

29

12

3

11

15

18

47

40

41

71

68 92

cnt = 12

cnt = 5

cnt = 2 cnt = 2 cnt = 2 cnt = 3

cnt = 6

cnt = 1 cnt = 1cnt = 1cnt = 1cnt = 1

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Range Count Problem

For a range [a, b] (e.g. [2, 48]), let s be the successor of a, p the
predecessor of b and u the lowest common ancestor of s and p. Let w1

and w2 be the left child and right child of u.

29

12

3

11

15

18

47

40

41

71

68 92

cnt = 12

cnt = 5

cnt = 2 cnt = 2 cnt = 2 cnt = 3

cnt = 6

cnt = 1 cnt = 1cnt = 1cnt = 1cnt = 1

2 48

u

w1 w2

s

p

The purple nodes are the right-hanging nodes of P(w1, s) and the orange

node is the left-hanging nodes of P(w2, p). Observe that all the nodes in

the subtrees of these left- and right-handing nodes are in the range

[2, 48].

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Range Count Problem

29

12

3

11

15

18

47

40

41

71

68 92

cnt = 12

cnt = 5

cnt = 2 cnt = 2 cnt = 2 cnt = 3

cnt = 6

cnt = 1 cnt = 1cnt = 1cnt = 1cnt = 1

2 48

u

w1 w2

s

p

Therefore, the number c of nodes of T in the range [2, 48] can be
computed by:

Initialize c = 1.

Increase c by the number of nodes on P(w1, s) and P(w2, p) whose
keys are in [2, 48].

For each right-hanging node v of P(w1, s), increase c by the
counter of v .

For each left-hanging node v of P(w2, p), increase c by the counter
of v .

For example, c = 1 + 2 + 1 + 1 + 2 + 2 = 9.
COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Range Count Problem

The range count query algorithm for a given range [a, b]:

Find the successor s of a and the predecessor p of b.

Identify the lowest common ancestor u of s and p. Let w1 and w2

be the left and right child nodes of u.

Initialize c = 1.

Increase c by the number of nodes on P(w1, s) and P(w2, p) whose
keys are in [a, b].

Walk along the path P(w1, s), for each right-hanging node v ,
increase c by the counter of v .

Walk along the path P(w2, p), for each left-hanging node v ,
increase c by the counter of v .

Return c .

The time complexity of the above query algorithm is O(log n).

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree



Besides the range count problem, we can also augment a balanced BST
on S to solve the following two interesting problems:

Range Sum Problem: Given two integers a and b such that a ≤ b, a
range sum query for the range [a, b] is to find the sum of the
integers in S which are in the range of [a, b].

Range Max Problem: Given two integers a and b such that a ≤ b, a
range max query for the range [a, b] is to find the max of the
integers in S which are in the range of [a, b].

Think: How?

COMP3506/7505, Uni of Queensland Applications of the Binary Search Tree


