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Dijkstra’s Algorithm

The algorithm solves the single-source shortest-paths (SSSP) problem on
a directed graph G = (V ,E ) with positive edge weights.

Let V ′ ⊆ V be the current set of vertices whose shortest paths from the
source vertex s have been found and S = V \V ′.

The crucial part of the algorithm is the edge relaxation idea. Essentially,

it is to maintain, for each v ∈ S , the “current shortest” distance from s

only through the vertices in V ′.
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Example

Suppose that the source vertex is a.
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V ′ = ∅ and
S = {a, b, c , d , e, f , g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b ∞ nil
c ∞ nil
d ∞ nil
e ∞ nil
f ∞ nil
g ∞ nil
h ∞ nil
i ∞ nil

Since dist(a) is the smallest among those of vertices in S , pick a.
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Example

Relax the out-going edges of a:
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V ′ = {a} and
S = {b, c , d , e, f , g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b ∞→ 2 nil → a
c ∞ nil
d ∞ nil
e ∞ nil
f ∞ nil
g ∞ nil
h ∞ nil
i ∞ nil

The “current shortest” distance of b from a only through the vertices in

V ′ is updated. After then, dist(b) is the smallest among those of vertices

in S . Pick b.
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Example

Relax the out-going edges of b:
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V ′ = {a, b} and
S = {c , d , e, f , g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c ∞ nil
d ∞→ 5 nil → b
e ∞ nil
f ∞ nil
g ∞ nil
h ∞ nil
i ∞ nil

Similarly, update the “current shortest” distance of d from a only

through the vertices in V ′. And dist(d) is the smallest among those in S .

Pick d .
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Example

Relax the out-going edges of d :
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V ′ = {a, b, d} and
S = {c , e, f , g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c ∞→ 12 nil → d
d 5 b
e ∞→ 6 nil → d
f ∞ nil
g ∞ nil
h ∞ nil
i ∞ nil

Since after the updates, dist(e) is the smallest among those in S , pick e.
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Example

Relax the out-going edges of e:
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V ′ = {a, b, d , e} and
S = {c , f , g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c 12 d
d 5 b
e 6 d
f ∞→ 7 nil → e
g ∞ nil
h ∞ nil
i ∞ nil
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Example

Relax the out-going edges of f :
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V ′ = {a, b, d , e, f } and
S = {c , g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c 12→10 d → f
d 5 b
e 6 d
f 7 e
g ∞ nil
h ∞→ 11 nil → f
i ∞ nil
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Example

Relax the out-going edges of c :
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V ′ = {a, b, c , d , e, f } and
S = {g , h, i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c 10 f
d 5 b
e 6 d
f 7 e
g ∞ nil
h 11 f
i ∞ nil
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Example

Relax the out-going edges of h:
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V ′ = {a, b, c , d , e, f , h} and
S = {g , i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c 10 f
d 5 b
e 6 d
f 7 e
g ∞→ 12 nil → h
h 11 f
i ∞→ 15 nil → h
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Example

Relax the out-going edges of g :
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V ′ = {a, b, c , d , e, f , g , h} and
S = {i}.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c 10 f
d 5 b
e 6 d
f 7 e
g 12 h
h 11 f
i 15→ 14 h→ g
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Example

Relax the out-going edges of i :
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V ′ = {a, b, c , d , e, f , g , h, i} and
S = {}.
Done.

vertex v dist(v) parent(v)
a 0 nil
b 2 a
c 10 f
d 5 b
e 6 d
f 7 e
g 12 h
h 11 f
i 14 g
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Prim’s Algorithm

The algorithm grows a tree Tmst by including one vertex at a time. At
any moment, it divides the vertex set V into two parts:

The set S of vertices that are already in Tmst .

The set of other vertices: V \S

At the end of the algorithm, S = V .

If an edge connects a vertex in V and a vertex in V \S , we call it an
extension edge.

At all times, the algorithm enforces the following lightest extension
principle:

For every vertex v ∈ V \S , it remembers which extension edge of v
has the smallest weight — referred to as the lightest extension edge
of v , and denoted as best-ext(v).
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Example

Edge {a, c} is the lightest of all. S = {a, c}. The MST has one edge
{a, c}.
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vertex v best-ext(v) and weight
a n/a
b {b, a}, 4
c n/a
d {d , c}, 2
e nil, ∞
f {f , c}, 10
g nil, ∞
h nil, ∞
i nil, ∞
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Example

Edge {d , c} is the lightest of all. S = {a, c , d}. Add edge {d , c} into the
MST.
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vertex v best-ext(v) and weight
a n/a
b {b, a}, 4
c n/a
d n/a
e {e, d}, 3
f {f , c}, 10
g {g , d}, 6
h nil, ∞
i nil, ∞
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Example

Edge {e, d} is the lightest of all. S = {a, c , d , e}. Add edge {e, d} into
the MST.
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vertex v best-ext(v) and weight
a n/a
b {b, a}, 4
c n/a
d n/a
e n/a
f {f , e}, 5
g {g , d}, 6
h nil, ∞
i nil, ∞

COMP3506/7505, Uni of Queensland Examples and applications on SSSP and MST



Example

Edge {b, a} is the lightest of all. S = {a, c , d , e, b}. Add edge {b, a} into
the MST.
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vertex v best-ext(v) and weight
a n/a
b n/a
c n/a
d n/a
e n/a
f {f , e}, 5
g {g , d}, 6
h nil, ∞
i nil, ∞

COMP3506/7505, Uni of Queensland Examples and applications on SSSP and MST



Example

Edge {f , e} is the lightest of all. S = {a, c , d , e, b, f }. Add edge {f , e}
into the MST.
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vertex v best-ext(v) and weight
a n/a
b n/a
c n/a
d n/a
e n/a
f n/a
g {g , d}, 6
h {h, f }, 12
i nil, ∞
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Example

Edge {g , d} is the lightest of all. S = {a, c , d , e, b, f , g}. Add edge
{g , d} into the MST.
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vertex v best-ext(v) and weight
a n/a
b n/a
c n/a
d n/a
e n/a
f n/a
g n/a
h {h, f }, 12
i {i , g}, 8
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Example

Edge {i , g} is the lightest of all. S = {a, c , d , e, b, f , g , i}. Add edge
{i , g} into the MST.
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vertex v best-ext(v) and weight
a n/a
b n/a
c n/a
d n/a
e n/a
f n/a
g n/a
h {h, i}, 3
i n/a
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Example

At the end, edge {h, i} is the lightest of all. S = {a, c , d , e, b, f , g , i , h}.
Add edge {h, i} into the MST and we get the final MST.
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vertex v best-ext(v) and weight
a n/a
b n/a
c n/a
d n/a
e n/a
f n/a
g n/a
h n/a
i n/a
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Facility Allocation — Application of Dijkstra’s Algorithm

Let G = (V ,E ) be an undirected graph with positive edge weights,
where each vertex v ∈ V represents either a user or a facility.

For a user u and a facility f , the distance between u and f is the shortest
distance from u to f on G denoted by dist(u, f ).

Our goal is to assign the nearest facility f to each user u such that:

There is no facility f ′ 6= f such that dist(f ′, u) < dist(f , u).

Furthermore, we say f = nearest-fac(u).
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Example

Given a graph below, fi (for i ∈ [1, 4]) represents a facility and uj (for
j ∈ [1, 4]) represents a user.

u1

f1

f2

u4

u3

f3

u2

f4
5

10 9

2

1
7

8
3 8

106

7 2 4

Then we have:

nearest-fac(u1) = f2,

nearest-fac(u2) = f3,

nearest-fac(u3) = f1,

nearest-fac(u4) = f1.
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Facility Allocation — Application of Dijkstra’s Algorithm

To solve the problem, the most trivial way is to run one Dijkstra’s
algorithm for each facility. And then, for each user u, pick the facility f
with dist(f , u) smallest.

However, we can do much better. In fact, only one Dijkstra is enough!
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Facility Allocation — Application of Dijkstra’s Algorithm

The algorithm is as follows:

Add an auxilary vertex s to G . Create an edge {s, f } for each
facility f with edge weight α, where α > 0 is smaller than any edge
weight in G .

Perform Dijkstra’s algorithm with source vertex s on the augmented
graph.

In the resulted SSSP tree, for each facility f , assign f to each user
in the subtree of f .
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Example

u1

f1
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f3

u2

f4
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7 2 4

s0.5

0.5

0.5

0.5

s

f1 f2 f3 f4

u3

u4

u1 u2
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Correctness

The correctness of the algorithm follows the facts below:

All the nodes at level-1 (assume s is at level-0) in the SSSP tree are
the facility vertices.

All the user nodes u in the subtree of a facility f satisfy:
dist(f , u) ≤ dist(f ′, u) for all facilities f ′ 6= f .

A short proof for the second bullet:

Suppose that there does exist a facility f ′ such that

dist(f ′, u) < dist(f , u). Then the path from s to u through f ′ is shorter

than that through f . It contradicts with the fact that u is in the subtree

of f in the SSSP tree.
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Traveling Salesman — Application of MST

Given a weighted undirected graph G = (V ,E ) satisfying the
followings:

G is complete: for ∀u, v ∈ V , {u, v} is in E .

The weight of each edge is positive.

All the weights satisfy the triangle inequality:
w(u, v) ≤ w(u, x) + w(x , v) for ∀u, v , x ∈ V , where w(u, v)
is the weight of edge {u, v}.

The Traveling Salesman Problem (TSP) is to find a route H∗ such
that:

H∗ is a cycle.

Each vertex v ∈ V is visited by H∗ once and exactly once.

The total weight of the edges on H∗ is smallest.
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Example

a

b

c

h

f

d

e

g
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h

f

d

e

g

For simple illustration, we show the input graph on the left without
drawing all the edges explicitly. Instead, we embed the graph on
the plan such that the weight of each edge is the euclidean
distance between its two end points.

The red cycle shown on the right is the optimal solution H∗.

The TSP problem is NP-hard!
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Traveling Salesman — Application of MST

For a cycle H in the input graph, denote the total weight of edges
on H by w(H).

In the following, we will introduce a 2-approximate algorithm for
the TSP problem in the sense that it always finds a solution H
with w(H) ≤ 2× w(H∗), where H∗ is the optimal solution.
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Compute an MST T of G .

Perform DFS on T from an arbitrary
node and record the node visiting
sequence S :
a, b, c , b, h, b, a, d , e, f , e, g , e, d , a.

Only keep the first occurrence of each
vertex in the sequence S :
a, b, c , h, d , e, f , g .

Let H be the route of this first
occurrence sequence. Return H as an
approximate solution.

a

b

c

h

f

d

e

g

a

b

c

h

f

d

e

g

We claim that w(H) ≤ 2× w(H∗).
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Proof sketch:

Since H∗ is a cycle on all the vertices, removing any edge
from H∗ will result to a spanning tree T ′. As all the edge
weights are positive and T is an MST, we have
w(T ) ≤ w(T ′) < w(H∗).

Since the DFS traverses each edge of T only twice, the total
weight of all the edges on the visit sequence S , denoted by
w(S), is 2× w(T ).

Consider any two consecutive vertices u and v on H. By the
triangle inequality, we know that w(u, v) is no more than the
total weight of all the edges on the sub-sequence of S
between their first occurrence. Therefore,
w(H) ≤ w(S) = 2× w(T ) < 2× w(H∗).
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