Examples of Graph Modelling

Tony Gong

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Examples of Graph Modelling



In lectures we have been studying a number of graph algorithms, with the
focus this week being on DFS (which when modified slightly also does
topological sorting) and strongly-connected components.

In the ensuing slides we will look at a few “real-life” problems (some
more contrived than others) that can be modelled with a graph and
solved using graph algorithms. The process essentially boils down to
identifying:
@ where the graph is, answering questions like what are the vertices,
what are the edges, are the edges directed, is the graph acyclic, etc;
and

@ which graph algorithm(s) to apply to solve the given problem.

You are encouraged to try to solve each problem yourself before looking
at the solutions.
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(Knight Placement)

Suppose we were given a configuration of a chessboard, e.g.

= N W A U1 Oy N

Given a knight on the board, say the black knight on g8, the problem is
to decide it is able to reach every unoccupied square on the board via
only unoccupied squares (i.e. we can't take) if every other piece on the
board are frozen in place.
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(Knight PIacement)

We will model the graph in the following way:

@ Vertices: each unoccupied square on the board is a vertex,
additionally the square the target knight is on is also a vertex.

@ Edges: add an undirected edge for every pair of vertices u and v
that are a knight's move apart.

The problem then is to check that the graph is connected, which we can
do using DFS.
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(Knight Placement)

Using the example shown earlier, the graph looks like:

At the end of running DFS on this graph with s being our source node,
every node in the graph would be coloured black and hence is reachable
from s, thus the answer is yes.
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(Knight PIacement)

After the move 3... a0, if we consider then the white knight on b1:

= N W b~ OO N

The graph is now disconnected with 3 connected components, and thus
the answer is no.
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Pick-Up Sticks

Pick-Up Sticks is a game where a bundle of sticks are randomly arranged
in a pile and each player takes turn attempting to remove sticks without
moving any of the others.

Suppose we are given a description of a pile of sticks (which are
numbered from 1 to N) in the form of a list of pairs (a, b) which say that
stick a is propped up by stick b. Note that a and b can never be equal
and we cannot have (a, b) and (b, a) simultaneously (in terms of a
relation, this means irreflexive and asymmetric).

Because it is difficult to remove sticks that lie underneath other sticks,
we are interested in knowing if there is an order in which we can remove
all of the sticks such that every stick we remove does not prop up any
other.
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Pick-Up Sticks

The graph can be modelled as follows:
@ Vertices: each stick is a vertex.

@ Edges: for each pair (a, b) encoding that a is on top of b, add the
directed edge (a, b).

At this point we would like to topological sort the vertices because that
would give us an ordering of the sticks from “top-to-bottom”...but is
our graph guaranteed to be free of cycles?
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Pick-Up Sticks

The answer is no! Even though a cycle in the form (u, v) and (v, u) is
forbidden by asymmetry, it is possible to have a cycle of the form say
(u,v), (v,w) and (w, u) (you should convince yourself that this
arrangement of three sticks is physically possible).

Thus it is not always possible to find the required ordering, and there is
an ordering iff the graph is free of cycles. One algorithm to solve this
problem is then the following:

@ Use DFS for cycle detection, and if there are cycles in the graph
then we know there is no such ordering.

@ If we know the graph is free of cycles, then run topological sort and
this will give us the required order.
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Dominoes

Suppose someone has laid out a configuration of dominoes to be toppled.
Again the dominoes are numbered from 1 to N and we have again a list
of pairs (a, b) that specify if domino a falls then it will topple b. As with
the previous question we may assume irreflexivity and asymmetry
(although these won't actually help simplify the problem).

The problem is to minimise the number of dominoes we need to manually
push over such that every single domino falls over.
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Dominoes

Hopefully the way the graph is modelled is obvious by this point:
@ Vertices: each domino is a vertex.
@ Edges: for each pair (a, b) add a directed edge (a, b).

The more subtle part of this question is figuring out how to solve it. Note
that as with the previous part, our directed graph may contain cycles.
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Dominoes

It's often useful to use some simple examples to gain insight into the
generalised version of the problem. In the simplest case where we just
have a string of dominoes:

O O

The solution is 1 because all we have to “push” the domino on the far
left and that is all. Let's consider a slightly more complicated case:

O O

Here we need to push 2 dominoes.

Why are these two cases easy to solve?

, Uni of Queensland Examples of Graph Modelling



Dominoes

Both of the cases presented previously were easy to solve because they do
not contain cycles. If the graph is a DAG, regardless of how complicated
it may be:

O O
O

The problem reduces to counting the number of vertices with an
in-degree of 0. In the above case the answer is 4.
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Dominoes

In the case where we do have cycles, such as in the following:

Notice that if any of a, b and c gets toppled (either directly or indirectly)
then all three will fall. This means that we can condense the three
vertices into one:




Dominoes

So what we really want to do is turn our directed graph (possibly with
cycles) into a DAG by condensing certain components of the graph into a
single vertex.

Recall that in the proof of why the strongly-connected components
algorithm is correct we made use of the SCC graph G°¢, which is a
DAG obtained by condensing each SCC into a vertex. This is precisely
what we need for this question because each SCC acts essentially like a
single vertex where if any vertex in an SCC is toppled then the entire
SCC falls as well. We can now give an algorithm for this problem:

© Build G°¢¢. We do this by first identifying the SCCs, creating a
vertex for each SCC and for each edge in G that connects two
SCCs, add the appropriate edge into G>¢C.

@ Count the number of vertices with 0 in-degree in G>¢C.
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As a final remark, observe that G°CC is identical to the original graph G

when it is a DAG. In other words, every vertex in a DAG forms a SCC by
itself (try to prove this!).

Hopefully these three problems provided some insight into the process of
reframing problems as graph problems and reassured you that the
algorithms we have been studying are indeed useful!
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