COMP3506: Mid-Semester Exam

Note 1: This is the exam paper for COMP3506. If you are registered for COMP7505, turn overleaf.
Note 2: Write all your solutions in the answer book

Problem 1 (5 marks). Prove: 5n + 3y/n = O(n).
Solution. 5n + 3y/n < 8n for all n > 1.

Problem 2 (10 marks). Let f(n) be a function of a positive integer n. We know:

fy =1
f2) = 2
fln) = 3+ f(n-2)

Prove f(n) = O(n).
Solution.

fn) = 3+ f(n-2)
= 32+ f(n—4)
= 3:-3+ f(n—06)

= 3-[n/2] + f(n—2[n/2])
3n/24 f(0)+ f(1) = O(n).
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Problem 3 (20 marks). Let S; and S be two disjoint sets of integers, i.e., S NSy = (). We know that
|S1| = |S2| = n (i.e., each set has n integers). Each set is stored in an array of length n, where its integers are
sorted in ascending order. Let £ > 1 be an integer. Design an algorithm to find the k£ smallest integers in 57 U S
in O(k) time.

Solution. Suppose that S is stored in array A;, and Sy in array As. Create an array B of size k. At the
beginning, B is empty.

Set i =1 and j = 1. Repeat the following until there are k integers in B:
o If Aj[i] < As[j], append A;[i] to B, and increment i by 1.

e Otherwise, append As[j] to B, and increment j by 1.

Problem 4 (15 marks). Consider a set of elements S = {12, 35,36, 78,91,93}. We use a hash function
h(k) = 1+ (k mod5)

to map integers to the domain {1,2,...,m} where m = 5. Draw the resulting hash table on S.
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Problem 5 (10 marks). Only one of the following statements is true. Which one is it?

A. The quick sort algorithm sorts n integers in O(nlogn) worst case time.

B. The time complexity of counting sort grows slower than that of merge sort.

C. Suppose that a data structure supports an operation in amortized O(1) time, then it supports any sequence of
n such operations in O(n) time.

D. Someday Prof. Tao would be able to discover a comparison-based algorithm that sorts n integers in O(ny/logn)
time.

Solution. C (note: no student answered D).

Problem 6 (20 marks). Let S be a set of n integers in the domain [1, U], where U = 2". Describe an algorithm
that determines if S contains two integers z,y such that y < z < 100 + y (i.e., the difference between x and y is
at most 100). Your algorithm must finish in O(n) time (O(n) expected time is acceptable).

5 marks given if your algorithm terminates in O(nlogn) time.

Solution. Create a hash table 7" on S in O(n) time. For every x € S, use T' to check whether z+1,z+2, ..., 2+100
are in T'. This requires 100 = O(1) queries, which take O(1) expected time in total. The execution time is therefore
O(n) expected.

Problem 7 (20 marks). Let A be an array that stores a set S of n integers. We know that there exists some
integer t € [1,n — 1] such that
At + 1], Alt + 2], ..., A[n], A[1], A[2], ..., A[t]

are in ascending order. Given such an array A, the value of n, and an arbitrary integer k, describe an algorithm
to determine whether k is in A. Note that the value of ¢ is not given. Your algorithm must terminate in O(logn)
time.

For example, suppose that n = 7. In A = (56, 78,91, 93,12, 35,36), t = 4, whereas in A = (93,12, 35, 36, 56, 78,91),

t = 1. Once again, the actual value of ¢ is unknown.

Solution. The difficult step is to find the value of ¢ in O(logn) time. After this, the problem can be easily solved
by performing binary search in the sequence from A[l] to A[t], and in the sequence from A[t + 1] to A[n].

We now explain how to find ¢, assuming n > 3 (otherwise, obtain ¢ by simply checking all the integers in A).
Let m = |n/2]. Proceed as follows:

o If A[m] > A[m + 1], return t = m.
o If Alm] > A[1], recur on the part of A behind A[m)|.

e Otherwise, recur on the part of A before A[m].
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Note 1: This is the exam paper for COMP7505. If you are registered for COMP3506, turn overleaf.
Note 2: Write all your solutions in the answer book

Problem 1 (5 marks). Prove: 5n + 3y/n = O(n).
Solution. See the COMP3506 paper.

Problem 2 (10 marks). Let S be a set of n integers stored in an array of length n. You are also given a value
of v. Design an algorithm to determine whether S has two integers that add up to v. Your algorithm should
terminate in O(nlogn) time.

Solution. Sort S. For each value x € S, binary search for v — x. If found, return “yes”. If still not found at the
end, return “no”.

Problem 3 (20 marks). Let S; and Sy be two disjoint sets of integers, i.e., S; NSy = (). We know that
|S1] = |S2| = n (i.e., each set has n integers). Each set is stored in an array of length n, where its integers are

sorted in ascending order. Let £ > 1 be an integer. Design an algorithm to find the k£ smallest integers in 57 U S
in O(k) time.

Solution. See the COMP3506 paper.

Problem 4 (15 marks). Consider a set of elements S = {12, 35,36, 78,91,93}. We use a hash function
h(k) = 1+ (k mod?5)

to map integers to the domain {1,2,...,m} where m = 5. Draw the resulting hash table on S.
Solution. See the COMP3506 paper.

Problem 5 (10 marks). Only one of the following statements is true. Which one is it?

A. The quick sort algorithm sorts n integers in O(nlogn) worst case time.

B. The time complexity of counting sort grows slower than that of merge sort.

C. Suppose that a data structure supports an operation in amortized O(1) time, then it supports any sequence of
n such operations in O(n) time.

D. Someday Prof. Tao would be able to discover a comparison-based algorithm that sorts n integers in O(ny/logn)
time.

Solution. See the COMP3506 paper.

Problem 6 (20 marks). Let S be a set of n integers in the domain [1, U], where U = 2". Describe an algorithm
that determines if S contains two integers x,y such that

e >y and

° % is a power of 2 that is between 8 and 256.

Your algorithm must finish in O(n) time (O(n) expected time is acceptable).

Solution. Create a hash table 7" on S using O(n) time. For each value y € S, probe the hash table to check
whether 8y, 16y, 32y, ..., 256y are in S. This requires 6 queries which take O(1) expected time. If any of these
values is in 7', return “yes”. If still not found till the end, return “no”. The total running time is therefore O(n)
expected.



Problem 7 (20 marks). Let A be an array that stores a set S of n integers. We know that there exists some
integer ¢ € [1,n — 1] such that
Alt + 1], At + 2], ..., A[n], A[1], A[2], ..., Alt]

are in ascending order. Given such an array A, the value of n, and an arbitrary integer k, describe an algorithm
to determine whether & is in A. Note that the value of ¢ is not given. Your algorithm must terminate in O(logn)
time.

For example, suppose that n = 7. In A = (56,78,91,93,12,35,36), t = 4, whereas in A = (93, 12, 35, 36, 56, 78,91),
t = 1. Once again, the actual value of ¢ is unknown.

Solution. See the COMP3506 paper.



