
COMP3506: Mid-Semester Exam

Note 1: This is the exam paper for COMP3506. If you are registered for COMP7505, turn overleaf.
Note 2: Write all your solutions in the answer book

Problem 1 (5 marks). Prove: 5n + 3
√
n = O(n).

Solution. 5n + 3
√
n ≤ 8n for all n ≥ 1.

Problem 2 (10 marks). Let f(n) be a function of a positive integer n. We know:

f(1) = 1

f(2) = 2

f(n) = 3 + f(n− 2)

Prove f(n) = O(n).

Solution.

f(n) = 3 + f(n− 2)

= 3 · 2 + f(n− 4)

= 3 · 3 + f(n− 6)

...

= 3 · bn/2c+ f(n− 2bn/2c)
≤ 3n/2 + f(0) + f(1) = O(n).

Problem 3 (20 marks). Let S1 and S2 be two disjoint sets of integers, i.e., S1 ∩ S2 = ∅. We know that
|S1| = |S2| = n (i.e., each set has n integers). Each set is stored in an array of length n, where its integers are
sorted in ascending order. Let k ≥ 1 be an integer. Design an algorithm to find the k smallest integers in S1 ∪ S2

in O(k) time.

Solution. Suppose that S1 is stored in array A1, and S2 in array A2. Create an array B of size k. At the
beginning, B is empty.

Set i = 1 and j = 1. Repeat the following until there are k integers in B:

• If A1[i] < A2[j], append A1[i] to B, and increment i by 1.

• Otherwise, append A2[j] to B, and increment j by 1.

Problem 4 (15 marks). Consider a set of elements S = {12, 35, 36, 78, 91, 93}. We use a hash function

h(k) = 1 + (k mod 5)

to map integers to the domain {1, 2, ...,m} where m = 5. Draw the resulting hash table on S.

Solution.

H

35

36

12

NIL

NIL

L1

L2

L3

L4

L5

78

91

NIL93

NIL

NIL

Problem 5 (10 marks). Only one of the following statements is true. Which one is it?
A. The quick sort algorithm sorts n integers in O(n log n) worst case time.
B. The time complexity of counting sort grows slower than that of merge sort.
C. Suppose that a data structure supports an operation in amortized O(1) time, then it supports any sequence of
n such operations in O(n) time.
D. Someday Prof. Tao would be able to discover a comparison-based algorithm that sorts n integers in O(n

√
log n)

time.

Solution. C (note: no student answered D).

Problem 6 (20 marks). Let S be a set of n integers in the domain [1, U], where U = 2n. Describe an algorithm
that determines if S contains two integers x, y such that y ≤ x ≤ 100 + y (i.e., the difference between x and y is
at most 100). Your algorithm must finish in O(n) time (O(n) expected time is acceptable).

5 marks given if your algorithm terminates in O(n log n) time.

Solution. Create a hash table T on S in O(n) time. For every x ∈ S, use T to check whether x+1, x+2, ..., x+100
are in T . This requires 100 = O(1) queries, which take O(1) expected time in total. The execution time is therefore
O(n) expected.

Problem 7 (20 marks). Let A be an array that stores a set S of n integers. We know that there exists some
integer t ∈ [1, n− 1] such that

A[t + 1], A[t + 2], ..., A[n], A[1], A[2], ..., A[t]

are in ascending order. Given such an array A, the value of n, and an arbitrary integer k, describe an algorithm
to determine whether k is in A. Note that the value of t is not given. Your algorithm must terminate in O(log n)
time.

For example, suppose that n = 7. In A = (56, 78, 91, 93, 12, 35, 36), t = 4, whereas in A = (93, 12, 35, 36, 56, 78, 91),
t = 1. Once again, the actual value of t is unknown.

Solution. The difficult step is to find the value of t in O(log n) time. After this, the problem can be easily solved
by performing binary search in the sequence from A[1] to A[t], and in the sequence from A[t + 1] to A[n].

We now explain how to find t, assuming n ≥ 3 (otherwise, obtain t by simply checking all the integers in A).
Let m = bn/2c. Proceed as follows:

• If A[m] > A[m + 1], return t = m.

• If A[m] > A[1], recur on the part of A behind A[m].

• Otherwise, recur on the part of A before A[m].

2

COMP7505: Mid-Semester Exam

Note 1: This is the exam paper for COMP7505. If you are registered for COMP3506, turn overleaf.
Note 2: Write all your solutions in the answer book

Problem 1 (5 marks). Prove: 5n + 3
√
n = O(n).

Solution. See the COMP3506 paper.

Problem 2 (10 marks). Let S be a set of n integers stored in an array of length n. You are also given a value
of v. Design an algorithm to determine whether S has two integers that add up to v. Your algorithm should
terminate in O(n log n) time.

Solution. Sort S. For each value x ∈ S, binary search for v − x. If found, return “yes”. If still not found at the
end, return “no”.

Problem 3 (20 marks). Let S1 and S2 be two disjoint sets of integers, i.e., S1 ∩ S2 = ∅. We know that
|S1| = |S2| = n (i.e., each set has n integers). Each set is stored in an array of length n, where its integers are
sorted in ascending order. Let k ≥ 1 be an integer. Design an algorithm to find the k smallest integers in S1 ∪ S2

in O(k) time.

Solution. See the COMP3506 paper.

Problem 4 (15 marks). Consider a set of elements S = {12, 35, 36, 78, 91, 93}. We use a hash function

h(k) = 1 + (k mod 5)

to map integers to the domain {1, 2, ...,m} where m = 5. Draw the resulting hash table on S.

Solution. See the COMP3506 paper.

Problem 5 (10 marks). Only one of the following statements is true. Which one is it?
A. The quick sort algorithm sorts n integers in O(n log n) worst case time.
B. The time complexity of counting sort grows slower than that of merge sort.
C. Suppose that a data structure supports an operation in amortized O(1) time, then it supports any sequence of
n such operations in O(n) time.
D. Someday Prof. Tao would be able to discover a comparison-based algorithm that sorts n integers in O(n

√
log n)

time.

Solution. See the COMP3506 paper.

Problem 6 (20 marks). Let S be a set of n integers in the domain [1, U], where U = 2n. Describe an algorithm
that determines if S contains two integers x, y such that

• x > y and

• x
y is a power of 2 that is between 8 and 256.

Your algorithm must finish in O(n) time (O(n) expected time is acceptable).

Solution. Create a hash table T on S using O(n) time. For each value y ∈ S, probe the hash table to check
whether 8y, 16y, 32y, ..., 256y are in S. This requires 6 queries which take O(1) expected time. If any of these
values is in T , return “yes”. If still not found till the end, return “no”. The total running time is therefore O(n)
expected.

Problem 7 (20 marks). Let A be an array that stores a set S of n integers. We know that there exists some
integer t ∈ [1, n− 1] such that

A[t + 1], A[t + 2], ..., A[n], A[1], A[2], ..., A[t]

are in ascending order. Given such an array A, the value of n, and an arbitrary integer k, describe an algorithm
to determine whether k is in A. Note that the value of t is not given. Your algorithm must terminate in O(log n)
time.

For example, suppose that n = 7. In A = (56, 78, 91, 93, 12, 35, 36), t = 4, whereas in A = (93, 12, 35, 36, 56, 78, 91),
t = 1. Once again, the actual value of t is unknown.

Solution. See the COMP3506 paper.

4

