Single Source Shortest Paths

(with Positive Weights)

Yufei Tao

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

In this lecture, we will revisit the single source shortest path (SSSP)
problem. Recall that we have already learned that the BFS algorithm
solves the problem efficiently when all the edges have the same weight.
Today we will see how to solve the problem in the more general situation
where the edges can have arbitrary positive weights.

We will discuss two variants of the problem, depending on whether the
input graph is a DAG or not. The former is clearly a special case of the
latter, and as a result, admits a faster algorithm.

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

(Weighted Graphs)

Let G = (V, E) be a directed graph. Let w be a function that maps each
edge in E to a positive integer value. Specifically, for each e € E, w(e) is
a positive integer value, which we call the weight of e.

A directed weighted graph is defined as the pair (G, w).

COMP3506/7505, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

The integer on each edge indicates its weight. For example, w(d,g) =1,
w(g,f) =2, and w(c, e) = 10.

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Shortest Path

Consider a directed weighted graph defined by a directed graph
G = (V, E) and function w.

Consider a path in G: (v1, v2), (v2,v3), ..., (vg, vey1), for some integer
¢ > 1. We define the length of the path as

)4

Z w(vi, Vit1).

i=1

Recall that we may also denote the path as v — vo — ... = vyy1.

Given two vertices u, v € V, a shortest path from u to v is a path from u
to v that has the minimum length among all the paths from u to v.

If v is unreachable from u, then the shortest path distance from v to v is

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

@ The path a — d — e has length 11.

@ Thepatha—b—c—d— g— f — e has length 8.

The second path is a shortest path from a to e.

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

(Single Source Shortest Path (SSSP) with Positive Weights)

Let (G, w) with G = (V, E) be a directed weighted graph, where w
maps every edge of E to a positive value.

Given a vertex s in V/, the goal of the SSSP problem is to find, for every
other vertex t € V' \ {s}, a shortest path from s to t, unless t is
unreachable from s.

COMP3506/7505, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

(A Subsequence Property)

Lemma: If vy — v — ... — vy11 is a shortest path from v; to vpi1, then
for every i, j satisfying 1 < i <j<{l4+1, vi = viy1 — ... = Vvisa
shortest path from v; to v;.

Proof: Suppose that this is not true. Then, we can find a shorter path
to go from v; to v;. Using this path to replace the original path from v;
to v; yields a shorter path from v; to v,y1, which contradicts the fact
that vi — vo — ... — vg41 is a shortest path. O

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Sincea— b—c—d— g — f— eis a shortest path, we know that
any subsequence of of this path is also a shortest path. For example,
b — ¢ — d — g must be a shortest path from b to g.

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Next, we will first explain how to solve the SSSP problem when the
input graph G is a DAG.

Utilizing the subsequence property, our algorithm will output a
shortest path tree that encodes all the shortest paths from the
source vertex s.

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

(The Edge Relaxation Idea)

For every vertex v € V, we will—at all times—maintain a value dist(v)
that is guaranteed to be an upper bound of the shortest path distance
from s to v.

At the end of the algorithm, we will ensure that every dist(v) equals the
precise shortest path distance from s to v.

A core operation in our algorithm is called edge relaxation:
@ Given an edge (u, v), we relax it as follows:

- If dist(v) < dist(u) + w(u, v), do nothing;
- Otherwise, reduce dist(v) to dist(u) + w(u, v).

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

(The Relaxation Lemma)

Lemma: dist(v) is still an upper bound of the shortest path distance
form s to v after the relaxation.

Proof: It suffices to prove that the shortest path from s to v cannot
have a length greater than dist(u) + w(u, v).

The value of dist(u) indicates the existence of a path from s to u whose
distance is at most dist(u). We can therefore go from s to v by first
taking that path to go to u, and then reach v by crossing the edge (u, v).
This gives us a path from s to v whose distance is at most

dist(u) + w(u, v). O

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

(SSSP Algorithm on a DAG)

@ Obtain a topological order L on G

@ Set dist(s) = 0, and dist(v) = oo for all other vertices v € V
© Set parent(v) = nil for all vertices v € V

© Remove all the vertices in L that are before s

© Repeat the following until L is empty:

5.1 remove the first vertex u of L
/* next we relax all the outgoing edges of u */

5.2 for every outgoing edge (u,v) of u

5.2.1 if dist(v) > dist(u) + w(u, v) then
set dist(v) = dist(u) + w(u, v), and parent(v) = u

COMP3506/7505, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Suppose that the source vertex is c.

o h vertex v | dist(v) | parent(v)
a o) nil
b 00 nil
c 0 nil
d 00 nil
e 00 nil
f o) nil
g) nil
h) nil
i 00 nil

First, obtain an arbitrary topological order, e.g.,

L=(a b,c,h d,g,if,e).

Initialize dist(v) and parent(v).

Remove all vertices before ¢ in L, after which L = (¢, h,d, g,i,f,e).

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax all the outgoing edges of c.

o h vertex v | dist(v) | parent(v)
a 00 nil
b 00 nil
c 0 nil
d 2 c
e 10 c
f) nil
g) nil
h 00 nil
i 00 nil

Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax all the outgoing edges of h.

o h vertex v | dist(v) | parent(v)
a 00 nil
b 00 nil
c 0 nil
d 2 c
e 10 c
f) nil
g) nil
h 00 nil
i 00 nil

Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax all the outgoing edges of d.

o h vertex v | dist(v) | parent(v)
a 00 nil
b 00 nil
c 0 nil
d 2 c
e 7 d
f) nil
g 3 d
h 00 nil
i 00 nil

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax all the outgoing edges of g.

o h vertex v | dist(v) | parent(v)
a o0 nil
b) nil
c 0 nil
d 2 c
e 7 d
f 5 g
g 3 d
h 00 nil
i 4 g

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax all the outgoing edges of /.

o h vertex v | dist(v) | parent(v)
a o0 nil
b) nil
c 0 nil
d 2 c
e 7 d
f 5 g
g 3 d
h 00 nil
i 4 g

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax all the outgoing edges of f.

o h vertex v | dist(v) | parent(v)
a o0 nil
b) nil
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h 00 nil
i 4 g

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax all the outgoing edges of e.

vertex v | dist(v) | parent(v)

a 00 nil
b 00 nil
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h 00 nil
i 4 g

L=).
At this point, we have computed the shortest path distances from ¢ to all
the other vertices.

5, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

(Constructing the Shortest Path Tree)

For every vertex v, if u = parent(v) is not nil, then make v a child of u.

a h vertex v | parent(v) shortest path tree
nil [«
nil
nil
c

f N

)
|
9

g 7
d
nil
g

-~ >R w0 Q0 T O

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Time Analysis

Step 1 (on Slide 30) can be done in O(|V| + |E]) time (DFS).
Steps 2-4 obviously take O(|V/|) time.

Regarding Step 5, notice that every outgoing edge is relaxed only once.
Since each relaxation takes only O(1) time, we know that Step 5 can be
implemented in O(|V| + |E|) time (O(1) time spent removing each
vertex from L).

Constructing the shortest path tree at the end obviously takes O(|V/)
time.

Overall the algorithm runs in O(| V| + |E|) time (which is optimal).

COMP3506/7505, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

We now prove that our algorithm is correct. In particular, we will
prove that when the algorithm finishes, dist(v) holds the correct
shortest path distance from s to v.

Strictly speaking, we also need to prove that the fields of parent(v)
allow us to construct the shortest path tree correctly, but this is
essentially a simple corollary of the above claim (and is left for

you).

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Correctness

Notice that dist(v) will never change after v is removed from L (and has
its out-going edges relaxed).

We will prove:

Lemma: When dist(v) is removed from L, dist(v) equals the shortest
path distance from s to v.

The lemma is sufficient for establishing the correctness of our algorithm.

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Correctness

Proof: Recall that at the beginning of the algorithm, we directly remove
all the vertices v that precede s in L, leaving dist(v) = co. This is
correct because none of those vertices are reachable from s (by definition
of topological order).

We will prove that the lemma also holds for the other vertices. We will
do so by induction on the order that vertices are removed from L,
starting from s.

Base Case: When s is removed, dist(s) = 0, as required by the lemma.

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Correctness

Proof (cont.):
Inductive Case: Suppose that we are removing v from L, and that the
lemma holds on all the vertices removed before v.

Let 7 be a shortest path from s to v, and u the vertex on m immediately
before v. It thus follows that u must be before v in L, and hence, must
have been removed.

It follows that dist(u) must be the shortest path distance from s to u.
Thus, by relaxing edge (u, v), the algorithm ensures that dist(v) cannot
be higher than dist(u) + w(u, v), which is exactly the shortest path
distance from s to v.

Then the lemma follows from the fact that dist(v) always remains an
upper bound of the shortest path distance (the relaxation lemma). O

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Next, we will extend the above algorithm to solve the SSSP problem
when the input graph G is a general directed graphs (i.e., cycles
may exist).

The major difference is the order that vertices are processed (recall
that a cylcic graph has no topological orders).

The extended algorithm is called Dijkstra's algorithm.

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

(The Edge Relaxation Idea)

Same idea as before!

For every vertex v € V, we will—at all times—maintain a value dist(v)
that is guaranteed to be an upper bound of the shortest path distance
from s to v. At the end of the algorithm, we will ensure that every
dist(v) equals the precise shortest path distance from s to v.

Edge relaxation: Given an edge (u, v), we relax it as follows:
- If dist(v) < dist(u) + w(u, v), do nothing;
- Otherwise, reduce dist(v) to dist(u) + w(u, v).

The relaxation lemma still holds.

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

(Dijkstra's Algorithm)

@ Set parent(v) = nil for all vertices v € V

@ Set dist(s) =0, and dist(v) = oo for all other vertices v € V
Q SetS=V

© Repeat the following until S is empty:

5.1 Remove from S the vertex u with the smallest dist(u).
/* next we relax all the outgoing edges of u */

5.2 for every outgoing edge (u,v) of u

5.2.1 if dist(v) > dist(u) + w(u, v) then
set dist(v) = dist(u) + w(u, v), and parent(v) = u

COMP3506/7505, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Suppose that the source vertex is c.

vertex v | dist(v) | parent(v)
a 00 nil
b 00 nil
c 0 nil
d 00 nil
e 00 nil
f) nil
g) nil
h 00 nil
i 00 nil

5 = {a7b7c’ d’e7 f’g7h’ i}'

Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax the out-going edges of ¢ (because dist(c) is the smallest in S):

vertex v | dist(v) | parent(v)
a) nil
b) nil
c 0 nil
d 2 c
e 10 c
f 00 nil
g o) nil
h) nil
i 00 nil

S={ab,d,e f,g h i}
Note that ¢ has been removed!

5, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax the out-going edges of d (because dist(d) is the smallest in S):

vertex v | dist(v) | parent(v)
a 8 d
b) nil
c 0 nil
d 2 c
e 10 c
f 00 nil
g 3 d
h 00 nil
i 00 nil

5, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax the out-going edges of g:

vertex v | dist(v) | parent(v)
a 8 d
b 00 nil
c 0 nil
d 2 c
e 10 c
f 5 g
g 3 d
h 00 nil
i 4 g

S={a,b,ef, h,i}.

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax the out-going edges of i:

vertex v | dist(v) | parent(v)
a 8 d
b 00 nil
c 0 nil
d 2 c
e 10 c
f 5 g
g 3 d
h 00 nil
i 4 g

S={a,b,ef, h}

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax the out-going edges of f:

o h vertex v | dist(v) | parent(v)
a 8 d
b) nil
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h 00 nil
i 4 g

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax the out-going edges of e:

o h vertex v | dist(v) | parent(v)
a 8 d
b) nil
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h 00 nil
i 4 g

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax the out-going edges of a:

o h vertex v | dist(v) | parent(v)
a 8 d
b 9 a
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h 00 nil
i 4 g

5, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax the out-going edges of b:

o h vertex v | dist(v) | parent(v)
a 8 d
b 9 a
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h 00 nil
i 4 g

5, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

Relax the out-going edges of h:

o h vertex v | dist(v) | parent(v)
a 8 d
b 9 a
c 0 nil
d 2 c
e 6 f
f 5 g
g 3 d
h 00 nil
i 4 g

S={}.

All the shortest path distances are now final.

5, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

(Constructing the Shortest Path Tree)

For every vertex v, if u = parent(v) is not nil, then make v a child of u.

vertex v parent(v) shortest path tree

- 3> WO QA0 T
Y
D
AN

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

(Correctness and Running Time)

It will be left as an exercise for you to prove that Dijkstra’s algorithm is
correct (by extending the correctness of our DAG algorithm).

Just as equally instructive is an exercise for you to implement Dijkstra's
algorithm in O((|V| + |E|) - log |V/|) time. You have already learned all
the data structures for this purpose. Now it is the time to practice
applying them.

, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

This concludes our discussion on the SSSP problem. We have learned
how to solve the problem in 3 settings:

@ Unit weight for all edges and arbitrary graphs: BFS, running time
O(|V|+ |E]).

@ Arbitrary weights and DAGs: The first algorithm in this lecture,
running time O(|V| + |E]).

@ Positive weights and arbitrary graphs: Dijkstra’s, running time
O((IVI+ |E]) - log [V]).

Remark: Using an advanced data structure (called the Fibonacci
Heap) that will not be covered in this course, we can actually
improve the running time of Dijkstra’s algorithm to O(| V| log | V| +
|E).

COMP3506/7505, Uni of Queensland Single Source Shortest Paths (with Positive Weights)

