Finding Strongly Connected Components

Yufei Tao

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

We just can't get enough of the beautiful algorithm of DFS!

In this lecture, we will use it to solve a problem—finding strongly
connected components—that seems to be rather difficult at first glance.
As you probably have guessed, the algorithm is once again very simple,
and runs DFS only twice.

, Uni of Queensland Finding Strongly Connected Components

(Strongly Connected Com ponent)

Let G = (V, E) be a directed graph.

A strongly connected component (SCC) of G is a subset S of V such
that

@ For any two vertices u, v € S, it must hold that:

o There is a path from v to v.
e There is a path from v to u.

@ S is maximal in the sense that we cannot put any more vertex into
S without violating the above property.

, Uni of Queensland Finding Strongly Connected Components

Consider the following graph:

{a, b, c} is an SCC.
{a,b,c,d} is not an SCC.

{d,e, f,k, 1} is not an SCC (because we can still add vertex g).
{e,d,f,k,I,g} is an SCC.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

(SCCS are Disjoint)

Theorem: Suppose that S; and S, are both SCCs of G. Then,
SiNS =0.

Proof: Assume that there is a vertex v in both S; and S,. Then, for any
vertex u; € S; and any vertex up € Sp:

@ There is a path from u; to up: we can first go from w; to v within
S1, and then from v to u, within S,.

@ Likewise, there is also a path from u, to uy.

Hence, neither S; nor S, is maximal, contradicting the fact that they are
SCCs. O

, Uni of Queensland Finding Strongly Connected Components

(The Problem of Finding SCCs)

Given a directed graph G = (V, E), the goal of the finding strongly
connected components problem is to divide V into disjoint subsets, each
of which is an SCC.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

The goal is to output the following 4 SCCs: {a, b,c}, {d,e,f, g, k, I},
{h,i}, and {j}.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Step 1: Obtain the reverse graph G7 by reversing the directions of all
the edges in G.

Uni of Queensland Finding Strongly Connected Components

Input graph Reverse graph

Uni of Queensland Finding Strongly Connected Components

Step 2: Perform DFS on GR, and obtain the sequence LF that the
vertices in GF turn black (i.e., whenever a vertex is popped out of the
stack, append it to LF).

Obtain L as the reverse order of LR,

, Uni of Queensland Finding Strongly Connected Components

Reverse graph GF:

a

.

€

We may perform DFS starting from any vertex. When a restart is needed,
we may do so from any vertex that is still white. The following is a
possible order that the vertices are discovered: f,/, k,e,j,d,g,i, h,a,b,c.

The corresponding turn-black sequence is
LR = (k7/7.j7 ha iaga d7 e7 f7 Ca b7 a)'
Hence, L = (a,b,c,f,e,d,g,i, h,j, k,I).

COMP3506/ , Uni of Queensland Finding Strongly Connected Components

Step 3: Perform DFS on the original graph G by obeying the following
rules:

@ Rule 1: Start the DFS at the first vertex of L.

@ Rule 2: Whenever a restart is needed, start from the first vertex of
L that is still white.

Output the vertices in each DFS-tree as an SCC.

COMP3506/ , Uni of Queensland Finding Strongly Connected Components

From the last step, we have L = (a, b,c,f,e,d,g,i, h,j, k,1).
The original graph G:

Start DFS from a, which finishes after discovering {a, c, b}.
Restart from f, which finishes after discovering {f, k,/,d,e, g}
Restart from i, which finishes after discovering {i, h}

Restart from j, which finishes after discovering {j}

The DFS returns 4 DFS-trees, whose vertex sets are shown as above.
Each vertex set constitutes an SCC.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Time Analysis

Steps 1 and 2 obviously require only O(|V/| + |E|) time.

Regarding Step 3, the DFS itself takes O(| V| + | E|) time, but we still
need to discuss the time to implement Rule 2. Namely, whenever DFS
needs a restart, how do we find the first white vertex in L efficiently?

This will be left as an exercise—where you will be asked to do so in
O(]V]) total time.

Hence, the overall execution time is O(|V| + |E|).

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Next, we will prove that the algorithm is correct. Once again, the
correctness is due to the remarkable properties of DFS.

, Uni of Queensland Finding Strongly Connected Components

Let G be the input directed graph, with SCCs 51, 55, ..., S; for some
t>1.
Let us define a SCC graph G°¢¢ as follows:

@ Each vertex in G°¢C is a distinct SCC in G.

@ Consider two vertices (a.k.a. SCCs) S; and S; (1 < i,j < t). G
has an edge from S; to S; if and only if

e i #j,and
o There is a path in G from a vertex in S; to a vertex in ;.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

SCC Graph

S) +— Sy =+— 53

Sy

Uni of Queensland Finding Strongly Connected Components

Lemma: G>¢C is a DAG.

Proof: Suppose that there is a cycle in G°¢C, which must involve at
least 2 SCCs—say S;, S;—as no vertex in G°¢C has an edge to itself.
Then, any vertex in 5; is reachable from any vertex in S;, and vice versa.
This violates the fact that S;, S; are SCCs (violating maximality). O

, Uni of Queensland Finding Strongly Connected Components

SCC Graph

Define an SCC as a sink SCC if it has no outgoing edge in G°¢C.
Lemma: There must be at least one sink SCC in G>¢C.

Proof: Since G°¢C is a DAG, it admits a topological order. The last
vertex of the topological order cannot have any outgoing edges.

, Uni of Queensland Finding Strongly Connected Components

O

SCC Graph

b

V-

Cc

S
a
S| +— Sy=+— 53

Sy

S is a sink vertex.

Uni of Queensland Finding Strongly Connected Components

(DFS in a Sink scc)

Lemma: Let S be a sink SCC of G°“C. Suppose that we perform a DFS
starting from any vertex in S. Then the first DFS-tree output must
include all and only the vertices in S.

Proof: Let v € S be the starting vertex of DFS. By the white path
theorem of DFS, the DFS-tree must include all the vertices that v can
reach. These are exactly the vertices in S. O

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

SCC Graph

S +— S =+— 53

b’.’j

Sy

Performing DFS from any vertex in S; will discover S; as the first SCC.

Uni of Queensland Finding Strongly Connected Components

(Finding SCCs—The Strategy)

The previous lemma suggests the following strategy for finding all the
SCCs:

1. Performing DFS from any vertex in a sink SCC S.

2. Delete all the vertices of S from G, as well as their edges.
3. Accordingly, delete S from G°¢C, as well as its edges.
4

. Repeat from Step 1, until G is empty.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

After deleting S;, we have:

Sy

SCC Graph

Sy +— 53

Sy

Now, S, becomes the sink SCC. Performing DFS from any vertex in S,
discovers S, as the second SCC.

, Uni of Queensland Finding Strongly Connected Components

After deleting S,, we have:

SCC Graph

54 S
b S
s O

Now, S3 becomes the sink SCC. Performing DFS from any vertex in S3
discovers S3 as the third SCC.

, Uni of Queensland Finding Strongly Connected Components

After deleting S3, we have:

SCC Graph

Sy
o
Sy O

Now, S; becomes the sink SCC. Performing DFS from any vertex in S,
discovers S, as the last SCC.

, Uni of Queensland Finding Strongly Connected Components

Next, we will show that this is exactly the strategy taken by our
algorithm. In particular, we resort to the ordering L to correctly
identify the sequence of sink SCCs!

, Uni of Queensland Finding Strongly Connected Components

(A Property of the Ordering L)

Lemma: Let S;, 5, be SCCs such that there is a path from S; to S; in
G°CC. In the ordering of L, the earliest vertex in S, must come before
the earliest vertex in 5.

Proof: Left to you as an exercise. O

, Uni of Queensland Finding Strongly Connected Components

SCC Graph

S) +— Sy <+— Sy

Recall that we obtained earlier L = (a, b,c,f,e,d,g,i, h,j, k,1). The red
vertices a, f, i, j are, respectively, the earliest vertex in L of $1,5;, 53, and
Ss.

, Uni of Queensland Finding Strongly Connected Components

This essentially completes the proof of the correctness of our SCC
algorithm.

You may want to ask: but we never delete any vertices from G! In
fact, we did, as far as DFS is concerned. To see this, recall that
DFS colors all the “done” vertices black. These vertices are never
touched again, and hence, effectively deleted.

, Uni of Queensland Finding Strongly Connected Components

