
Finding Strongly Connected Components

Yufei Tao

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

We just can’t get enough of the beautiful algorithm of DFS!

In this lecture, we will use it to solve a problem—finding strongly
connected components—that seems to be rather difficult at first glance.
As you probably have guessed, the algorithm is once again very simple,
and runs DFS only twice.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Strongly Connected Component

Let G = (V ,E) be a directed graph.

A strongly connected component (SCC) of G is a subset S of V such
that

For any two vertices u, v ∈ S , it must hold that:

There is a path from u to v .
There is a path from v to u.

S is maximal in the sense that we cannot put any more vertex into
S without violating the above property.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Example

Consider the following graph:

a b

c

d

e

f g

h

i

j

k
l

{a, b, c} is an SCC.

{a, b, c , d} is not an SCC.

{d , e, f , k, l} is not an SCC (because we can still add vertex g).

{e, d , f , k , l , g} is an SCC.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

SCCs are Disjoint

Theorem: Suppose that S1 and S2 are both SCCs of G . Then,
S1 ∩S2 = ∅.

Proof: Assume that there is a vertex v in both S1 and S2. Then, for any
vertex u1 ∈ S1 and any vertex u2 ∈ S2:

There is a path from u1 to u2: we can first go from u1 to v within
S1, and then from v to u2 within S2.

Likewise, there is also a path from u2 to u1.

Hence, neither S1 nor S2 is maximal, contradicting the fact that they are

SCCs.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

The Problem of Finding SCCs

Given a directed graph G = (V ,E), the goal of the finding strongly

connected components problem is to divide V into disjoint subsets, each

of which is an SCC.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Example

a b

c

d

e

f g

h

i

j

k
l

The goal is to output the following 4 SCCs: {a, b, c}, {d , e, f , g , k, l},
{h, i}, and {j}.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Algorithm

Step 1: Obtain the reverse graph GR by reversing the directions of all
the edges in G .

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Example

a b

c

d

e

f g

h

i

j

k
l a b

c

d

e

f g

h

i

j

k
l

Input graph Reverse graph

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Algorithm

Step 2: Perform DFS on GR , and obtain the sequence LR that the
vertices in GR turn black (i.e., whenever a vertex is popped out of the
stack, append it to LR).

Obtain L as the reverse order of LR .

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Example

Reverse graph GR :

a b

c

d

e

f g

h

i

j

k
l

We may perform DFS starting from any vertex. When a restart is needed,
we may do so from any vertex that is still white. The following is a
possible order that the vertices are discovered: f , l , k , e, j , d , g , i , h, a, b, c .

The corresponding turn-black sequence is
LR = (k, l , j , h, i , g , d , e, f , c , b, a).

Hence, L = (a, b, c , f , e, d , g , i , h, j , k , l).

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Algorithm

Step 3: Perform DFS on the original graph G by obeying the following
rules:

Rule 1: Start the DFS at the first vertex of L.

Rule 2: Whenever a restart is needed, start from the first vertex of
L that is still white.

Output the vertices in each DFS-tree as an SCC.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Example

From the last step, we have L = (a, b, c , f , e, d , g , i , h, j , k, l).
The original graph G :

a b

c

d

e

f g

h

i

j

k
l

Start DFS from a, which finishes after discovering {a, c , b}.
Restart from f , which finishes after discovering {f , k , l , d , e, g}
Restart from i , which finishes after discovering {i , h}
Restart from j , which finishes after discovering {j}

The DFS returns 4 DFS-trees, whose vertex sets are shown as above.

Each vertex set constitutes an SCC.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Time Analysis

Steps 1 and 2 obviously require only O(|V |+ |E |) time.

Regarding Step 3, the DFS itself takes O(|V |+ |E |) time, but we still
need to discuss the time to implement Rule 2. Namely, whenever DFS
needs a restart, how do we find the first white vertex in L efficiently?
This will be left as an exercise—where you will be asked to do so in
O(|V |) total time.

Hence, the overall execution time is O(|V |+ |E |).

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Next, we will prove that the algorithm is correct. Once again, the
correctness is due to the remarkable properties of DFS.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

SCC Graph

Let G be the input directed graph, with SCCs S1,S2, ...,St for some
t ≥ 1.

Let us define a SCC graph GSCC as follows:

Each vertex in GSCC is a distinct SCC in G .

Consider two vertices (a.k.a. SCCs) Si and Sj (1 ≤ i , j ≤ t). GSCC

has an edge from Si to Sj if and only if

i 6= j , and
There is a path in G from a vertex in Si to a vertex in Sj .

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Example

SCC Graph

S1 S2 S3

S4

a b

c

d

e

f g

h

i

j

S1

S2

S3

S4

k
l

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

SCC Graph

Lemma: GSCC is a DAG.

Proof: Suppose that there is a cycle in GSCC , which must involve at
least 2 SCCs—say Si ,Sj—as no vertex in GSCC has an edge to itself.
Then, any vertex in Si is reachable from any vertex in Sj , and vice versa.
This violates the fact that Si ,Sj are SCCs (violating maximality).

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

SCC Graph

Define an SCC as a sink SCC if it has no outgoing edge in GSCC .

Lemma: There must be at least one sink SCC in GSCC .

Proof: Since GSCC is a DAG, it admits a topological order. The last
vertex of the topological order cannot have any outgoing edges.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Example

SCC Graph

S1 S2 S3

S4

a b

c

d

e

f g

h

i

j

S1

S2

S3

S4

k
l

S1 is a sink vertex.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

DFS in a Sink SCC

Lemma: Let S be a sink SCC of GSCC . Suppose that we perform a DFS
starting from any vertex in S . Then the first DFS-tree output must
include all and only the vertices in S .

Proof: Let v ∈ S be the starting vertex of DFS. By the white path
theorem of DFS, the DFS-tree must include all the vertices that v can
reach. These are exactly the vertices in S .

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Example

SCC Graph

S1 S2 S3

S4

a b

c

d

e

f g

h

i

j

S1

S2

S3

S4

k
l

Performing DFS from any vertex in S1 will discover S1 as the first SCC.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Finding SCCs—The Strategy

The previous lemma suggests the following strategy for finding all the
SCCs:

1. Performing DFS from any vertex in a sink SCC S .

2. Delete all the vertices of S from G , as well as their edges.

3. Accordingly, delete S from GSCC , as well as its edges.

4. Repeat from Step 1, until G is empty.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Example

After deleting S1, we have:

SCC Graph

S2 S3

S4

d

e

f g

h

i

j

S2

S3

S4

k
l

Now, S2 becomes the sink SCC. Performing DFS from any vertex in S2
discovers S2 as the second SCC.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Example

After deleting S2, we have:

SCC Graph

S3

S4

h

i

j

S3

S4

Now, S3 becomes the sink SCC. Performing DFS from any vertex in S3
discovers S3 as the third SCC.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Example

After deleting S3, we have:

SCC Graph

S4

j

S4

Now, S4 becomes the sink SCC. Performing DFS from any vertex in S4
discovers S4 as the last SCC.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Next, we will show that this is exactly the strategy taken by our
algorithm. In particular, we resort to the ordering L to correctly
identify the sequence of sink SCCs!

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

A Property of the Ordering L

Lemma: Let S1,S2 be SCCs such that there is a path from S1 to S2 in
GSCC . In the ordering of L, the earliest vertex in S2 must come before
the earliest vertex in S1.

Proof: Left to you as an exercise.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

Example

SCC Graph

S1 S2 S3

S4

a b

c

d

e

f g

h

i

j

S1

S2

S3

S4

k
l

Recall that we obtained earlier L = (a, b, c , f , e, d , g , i , h, j , k, l). The red

vertices a, f , i , j are, respectively, the earliest vertex in L of S1,S2,S3, and

S4.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

This essentially completes the proof of the correctness of our SCC
algorithm.

You may want to ask: but we never delete any vertices from G ! In
fact, we did, as far as DFS is concerned. To see this, recall that
DFS colors all the “done” vertices black. These vertices are never
touched again, and hence, effectively deleted.

COMP3506/7505, Uni of Queensland Finding Strongly Connected Components

