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We just can't get enough of the beautiful algorithm of DFS!

In this lecture, we will use it to solve a problem—finding strongly
connected components—that seems to be rather difficult at first glance.
As you probably have guessed, the algorithm is once again very simple,
and runs DFS only twice.
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(Strongly Connected Com ponent)

Let G = (V, E) be a directed graph.

A strongly connected component (SCC) of G is a subset S of V such
that

@ For any two vertices u, v € S, it must hold that:

o There is a path from v to v.
e There is a path from v to u.

@ S is maximal in the sense that we cannot put any more vertex into
S without violating the above property.
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Consider the following graph:

{a, b, c} is an SCC.
{a,b,c,d} is not an SCC.

{d,e, f,k, 1} is not an SCC (because we can still add vertex g).
{e,d,f,k,I,g} is an SCC.
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(SCCS are Disjoint)

Theorem: Suppose that S; and S, are both SCCs of G. Then,
SiNS =0.

Proof: Assume that there is a vertex v in both S; and S,. Then, for any
vertex u; € S; and any vertex up € Sp:

@ There is a path from u; to up: we can first go from w; to v within
S1, and then from v to u, within S,.

@ Likewise, there is also a path from u, to uy.

Hence, neither S; nor S, is maximal, contradicting the fact that they are
SCCs. O
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(The Problem of Finding SCCs)

Given a directed graph G = (V, E), the goal of the finding strongly
connected components problem is to divide V into disjoint subsets, each
of which is an SCC.
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The goal is to output the following 4 SCCs: {a, b,c}, {d,e,f, g, k, I},
{h,i}, and {j}.
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Step 1: Obtain the reverse graph G7 by reversing the directions of all
the edges in G.
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Input graph Reverse graph
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Step 2: Perform DFS on GR, and obtain the sequence LF that the
vertices in GF turn black (i.e., whenever a vertex is popped out of the
stack, append it to LF).

Obtain L as the reverse order of LR,
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Reverse graph GF:

a

.

€

We may perform DFS starting from any vertex. When a restart is needed,
we may do so from any vertex that is still white. The following is a
possible order that the vertices are discovered: f,/, k,e,j,d,g,i, h,a,b,c.

The corresponding turn-black sequence is
LR = (k7/7.j7 ha iaga d7 e7 f7 Ca b7 a)'
Hence, L = (a,b,c,f,e,d,g,i, h,j, k,I).
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Step 3: Perform DFS on the original graph G by obeying the following
rules:

@ Rule 1: Start the DFS at the first vertex of L.

@ Rule 2: Whenever a restart is needed, start from the first vertex of
L that is still white.

Output the vertices in each DFS-tree as an SCC.
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From the last step, we have L = (a, b,c,f,e,d,g,i, h,j, k,1).
The original graph G:

Start DFS from a, which finishes after discovering {a, c, b}.
Restart from f, which finishes after discovering {f, k,/,d,e, g}
Restart from i, which finishes after discovering {i, h}

Restart from j, which finishes after discovering {j}

The DFS returns 4 DFS-trees, whose vertex sets are shown as above.
Each vertex set constitutes an SCC.
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Time Analysis

Steps 1 and 2 obviously require only O(|V/| + |E|) time.

Regarding Step 3, the DFS itself takes O(| V| + | E|) time, but we still
need to discuss the time to implement Rule 2. Namely, whenever DFS
needs a restart, how do we find the first white vertex in L efficiently?

This will be left as an exercise—where you will be asked to do so in
O(]V]) total time.

Hence, the overall execution time is O(|V| + |E|).
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Next, we will prove that the algorithm is correct. Once again, the
correctness is due to the remarkable properties of DFS.
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Let G be the input directed graph, with SCCs 51, 55, ..., S; for some
t>1.
Let us define a SCC graph G°¢¢ as follows:

@ Each vertex in G°¢C is a distinct SCC in G.

@ Consider two vertices (a.k.a. SCCs) S; and S; (1 < i,j < t). G
has an edge from S; to S; if and only if

e i #j,and
o There is a path in G from a vertex in S; to a vertex in ;.
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SCC Graph

S) +— Sy =+— 53

Sy
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Lemma: G>¢C is a DAG.

Proof: Suppose that there is a cycle in G°¢C, which must involve at
least 2 SCCs—say S;, S;—as no vertex in G°¢C has an edge to itself.
Then, any vertex in 5; is reachable from any vertex in S;, and vice versa.
This violates the fact that S;, S; are SCCs (violating maximality). O
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SCC Graph

Define an SCC as a sink SCC if it has no outgoing edge in G°¢C.
Lemma: There must be at least one sink SCC in G>¢C.

Proof: Since G°¢C is a DAG, it admits a topological order. The last
vertex of the topological order cannot have any outgoing edges.
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SCC Graph
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S| +— Sy=+— 53
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S is a sink vertex.
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(DFS in a Sink scc)

Lemma: Let S be a sink SCC of G°“C. Suppose that we perform a DFS
starting from any vertex in S. Then the first DFS-tree output must
include all and only the vertices in S.

Proof: Let v € S be the starting vertex of DFS. By the white path
theorem of DFS, the DFS-tree must include all the vertices that v can
reach. These are exactly the vertices in S. O
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SCC Graph

S +— S =+— 53

b’.’j

Sy

Performing DFS from any vertex in S; will discover S; as the first SCC.
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(Finding SCCs—The Strategy)

The previous lemma suggests the following strategy for finding all the
SCCs:

1. Performing DFS from any vertex in a sink SCC S.

2. Delete all the vertices of S from G, as well as their edges.
3. Accordingly, delete S from G°¢C, as well as its edges.
4

. Repeat from Step 1, until G is empty.
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After deleting S;, we have:

Sy

SCC Graph

Sy +— 53

Sy

Now, S, becomes the sink SCC. Performing DFS from any vertex in S,
discovers S, as the second SCC.
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After deleting S,, we have:

SCC Graph

54 S
b S
s O

Now, S3 becomes the sink SCC. Performing DFS from any vertex in S3
discovers S3 as the third SCC.
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After deleting S3, we have:

SCC Graph

Sy
o
Sy O

Now, S; becomes the sink SCC. Performing DFS from any vertex in S,
discovers S, as the last SCC.

, Uni of Queensland Finding Strongly Connected Components



Next, we will show that this is exactly the strategy taken by our
algorithm. In particular, we resort to the ordering L to correctly
identify the sequence of sink SCCs!
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(A Property of the Ordering L)

Lemma: Let S;, 5, be SCCs such that there is a path from S; to S; in
G°CC. In the ordering of L, the earliest vertex in S, must come before
the earliest vertex in 5.

Proof: Left to you as an exercise. O
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SCC Graph

S) +— Sy <+— Sy

Recall that we obtained earlier L = (a, b,c,f,e,d,g,i, h,j, k,1). The red
vertices a, f, i, j are, respectively, the earliest vertex in L of $1,5;, 53, and
Ss.
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This essentially completes the proof of the correctness of our SCC
algorithm.

You may want to ask: but we never delete any vertices from G! In
fact, we did, as far as DFS is concerned. To see this, recall that
DFS colors all the “done” vertices black. These vertices are never
touched again, and hence, effectively deleted.
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