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We have already learned that the binary heap serves as an efficient
implementation of a priority queue. Our previous discussion was based on
pointers (for getting a parent node connected with its children). In this
lecture, we will see a “pointerless” way to implement a binary heap,
which in practice achieves much lower space consumption.

We will also see a way to build a heap from n integers in just O(n) time,

improving the obvious O(n log n) bound.
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Recall:

Priority Queue

A priority queue stores a set S of n integers and supports the
following operations:

Insert(e): Adds a new integer to S .

Delete-min: Removes the smallest integer in S , and
returns it.
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Recall:

Binary Heap

Let S be a set of n integers. A binary heap on S is a binary tree
T satisfying:

1 T is complete.

2 Every node u in T corresponds to a distinct integer in
S—the integer is called the key of u (and is stored at u).

3 If u is an internal node, the key of u is smaller than those of
its child nodes.
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Storing a Complete Binary Tree Using an Array

Let T be any complete binary tree with n nodes. Let us linearize the
nodes in the following manner:

Put nodes at a higher level before those at a lower level.

Within the same level, order the nodes from left to right.

Let us store the linearized sequence of nodes in an array A of length n.
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Example

1

39 8

26 2379 54

93

Stored as

1 39 8 26 2379 54 93
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Property 1

Let us refer to the i-th element of A as A[i ].

Lemma: Suppose that node u of T is stored at A[i ]. Then, the
left child of u is stored at A[2i ], and the right child at A[2i + 1].

Observe this from the example of the previous slide.
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Property 1

Proof: Suppose that u is the j-th node at Level `. This level must be full
because u has a child node (which must be at Level ` + 1). In other
words, there are 2` nodes at level `.

We will prove the lemma only for the left child (the right child is simply
stored at the next position of the array). From the fact that u is the i-th
node in the linearized order, we know:

i = j + 20 + 21 + ... + 2`−1

= j + 2` − 1.

COMP3506/7505, Uni of Queensland Binary Heaps in Dynamic Arrays



Property 1

level `
j1

...

... ...

level ` + 1

u

Next we will prove that there are precisely i − 1 nodes in A after u but
before its left child. These nodes include:

Those at Level ` behind u: there are 2` − j of them.

Child nodes of the first j − 1 nodes at Level `: there are 2j of them.

Hence, in total, there are 2` − j + 2j = 2` + j = i − 1 such nodes. This
completes the proof.
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Property 1

The following is an immediate corollary of the previous lemma:

Corollary: Suppose that node u of T is stored at A[i ]. Then, the
parent of u is stored at A[bi/2c].
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Property 2

The following is a simple yet useful fact:

Lemma: The rightmost leaf node at the bottom level is stored at
A[n].

Proof: Obvious.
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Now we have got everything we need to implement the insertion
and delete-min algorithms (discussed in the previous lecture) on
the array representation of a binary heap.
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Example

Inserting 15:

1 39 8 26 2379 54 93 15

1 39 8 26 23 7954 9315

1 398 26 23 7954 9315

Performing a delete-min:

1 398 26 23 7954 9315

398 26 2379 54 9315

398 26 2379 54 9315

398 2623 7954 9315
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Performance Guarantees

Combining our analysis on (i) binary heaps and (ii) dynamic arrays, we
obtain the following guarantees on a binary heap implemented with a
dynamic array:

Space consumption O(n).

Insertion: O(log n) time amortized.

Delete-min: O(log n) time amortized.

COMP3506/7505, Uni of Queensland Binary Heaps in Dynamic Arrays



Next, we consider the problem of creating a binary heap on a set S
of n integers. Obviously, we can do so in O(n log n) time by doing
n insertions. However, this is an overkill because the binary heap
does not need to support any delete-min operations until all the n
numbers have been inserted. This raises the question whether we
can build the heap faster.

The answer is positive: we will see an algorithm that does so in
O(n) time.
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Fixing a Messed-Up Root

Let us first consider the following root-fix operation. We are given a
complete binary tree T with root r . It is guaranteed that:

The left subtree of r is a binary heap.

The right subtree of r is a binary heap.

However, the key of r may not be smaller than the keys of its children.
The operation fixes the issue, and makes T a binary heap.

This can be done in O(log n) time – in the same manner as the

delete-min algorithm (by descending a path).
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Example

25

15 8

26 2339 54

93 79 ⇒

2515

8

26 2339 54

93 79 ⇒

25

15

8

26

23

39 54

93 79
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Building a Heap

Given an array A that stores a set S of n integers, we can turn A into a
binary heap on S using the following simple algorithm, which views A as
a complete binary search tree T :

For each i = n downto 1

- Perform root-fix on the subtree of T rooted at A[i ]

Think: Why are the conditions of root-fix always satisfied?
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Example

1 39826 2354 9315

1 39826 2354 9315

i

1 39826 2354 9315

i

i

1 39826 2354 9315

i

139 826 2354 9315

i

1 39 826 2354 9315

i

1 398 26 2354 9315

i

1 398 26 2354 9315

i
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Running Time

Now let us analyze the time of the building algorithm. Suppose that T
has height h. Without loss of generality, assume that all the levels of T
are full – namely, n = 2h − 1 (why no generality is lost?).

Observe:

A node at Level h − 1 incurs O(1) time in root-fix; 2h−1 such
nodes.

A node at Level h − 2 incurs O(2) time in root-fix; 2h−2 such
nodes.

A node at Level h − 3 incurs O(3) time in root-fix; 2h−3 such
nodes.

...

A node at Level h− h incurs O(h) time in root-fix; 20 such nodes.
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Running Time

Hence, the total time is bounded by

h∑
i=1

O
(
i · 2h−i

)
= O

(
h∑

i=1

i · 2h−i

)

We will prove that the right hand side is O(n) in the next slide.
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Running Time

Suppose that

x = 2h−1 + 2 · 2h−2 + 3 · 2h−3 + ... + h · 20 (1)

⇒ 2x = 2h + 2 · 2h−1 + 3 · 2h−2 + ... + h · 21 (2)

Subtracting (1) from (2) gives

x = 2h + 2h−1 + 2h−2 + ... + 21 − h

≤ 2h+1

= 2(n + 1) = O(n).
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