
Merge Sort

Yufei Tao

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Merge Sort



Recall:

The Sorting Problem

Problem Input:

A set S of n integers is given in an array of length n. The value of n is
inside the CPU (i.e., in a register).

Goal:

Design an algorithm to store S in an array where the elements have been

arranged in ascending order.

COMP3506/7505, Uni of Queensland Merge Sort



Example

Input:

...

5 91217 2628 3538 41 47 52686972 8388

16

Output:

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16

COMP3506/7505, Uni of Queensland Merge Sort



In this lecture, we will learn an algorithm called merge sort settling the
problem in O(n log n) time. As we will see, this algorithm is another
beautiful application of recursion.

Recall: The idea of recursion is to carry out two steps:

1 [Base Case]
Solve the case where the problem size n = 1 and 0 (usually trivial).

2 [Inductive Case]
Solve the problem with a problem size n > 1 by reducing n.

COMP3506/7505, Uni of Queensland Merge Sort



Merge Sort

Base Case. If n = 1 (i.e., S has a single element), there is nothing to
sort. Return directly.

Inductive Case. Otherwise, the algorithm runs in three steps:

1 Recursively sort the first half of the array S (i.e., same problem but
with size n/2).

2 Recursively sort the second half of the array.

3 Merge the two halves of the array into the final sorted sequence
(details later).

COMP3506/7505, Uni of Queensland Merge Sort



Example

Input:

...

5 91217 2628 3538 41 47 52686972 8388

16

First step, sort the first half of the array by recursion.

...

5 91217 26 28 3538 41 47 52686972 83 88

16

sort recursively

COMP3506/7505, Uni of Queensland Merge Sort



Example

Second step, sort the second half of the array by recursion:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

sort recursively

Third step, merge the two halves.

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16

COMP3506/7505, Uni of Queensland Merge Sort



Merging

We are looking at the following (sub-)problem.

There are two arrays—denoted as A1 and A2—of integers. Each
array has (at most) n/2 integers, which have been sorted in ascend-
ing order. The goal is to produce an array A with all the integers
in A1 and A2, sorted in ascending order.

The following shows an example of the input:

...

5 12917 2826 3538 41 47 52 68 6972 83 88

16

A2A1

COMP3506/7505, Uni of Queensland Merge Sort



Merging

At the beginning, set i and j to 1.

Repeat the following until i > n/2 or j > n/2:

1 If A1[i ] (i.e., the i-th integer of A1) is smaller than A2[j ], append
A1[i ] to A, and increase i by 1.

2 Otherwise, append A2[j ] to A, and increase j by 1.

COMP3506/7505, Uni of Queensland Merge Sort



Example

At the beginning of merging:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

Appending 5 to A:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

5

COMP3506/7505, Uni of Queensland Merge Sort



Example

Appending 9 to A:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

5 9

Appending 12 to A:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

5 9 12

COMP3506/7505, Uni of Queensland Merge Sort



Example

Appending 17 to A:

...

5 9 1217 26 28 3538 41 47 52 68 6972 83 88

16

A2A1

i j

A

5 9 12 17

And so on.

COMP3506/7505, Uni of Queensland Merge Sort



Running Time of Merge Sort

Let f (n) denote the worst-case running time of merge sort when executed
on an array of size n.

From the basic step, we know:

f (n) = O(1)

From the inductive step, we know:

f (n) ≤ 2f (n/2) + O(n)

where the first term on the right hand side is because the recursion sorts

two arrays each of size n/2, and the second term captures the time of

merging (convince yourself this is true).

COMP3506/7505, Uni of Queensland Merge Sort



Running Time of Merge Sort

So it remains to solve the following recurrence:

f (n) ≤ c1

f (n) ≤ 2f (n/2) + c2n

where c1, c2 are constants (whose values we do not care). Using the
expansion method, we have:

f (n) ≤ 2f (n/2) + c2n

≤ 2(2f (n/4) + c2n/2) + c2n = 4f (n/4) + 2c2n

≤ 4(2f (n/8) + c2n/4) + 2c2n = 8f (n/8) + 3c2n

...

≤ 2i f (n/2i ) + i · c2n
...

(h = log2 n) ≤ 2hf (1) + h · c2n
≤ n · c1 + c2n · log2 n = O(n log n).

COMP3506/7505, Uni of Queensland Merge Sort



Running Time of Merge Sort

The previous discussion assumed n to be a power of 2. How do we
remove the assumption?

Hint: The rounding approach discussed in a previous lecture.

COMP3506/7505, Uni of Queensland Merge Sort



It is worth mentioning that the specific form of recursion we used in

merge sort is also called divide and conquer. The name is fairly intuitive:

we “divided” the input array into two halves, “conquered” them

separately (i.e., sorting them), and derived the overall result. This is an

important technique in computer science.

COMP3506/7505, Uni of Queensland Merge Sort



Recall that selection sort performs sorting in O(n2) time. Today, we have

significantly improved the running time to O(n log n). Interestingly, this

can no longer been improved asymptotically using the so-called

“comparison-based” approach—we will prove later that any

comparison-based algorithm must incur Ω(n log n) time!

COMP3506/7505, Uni of Queensland Merge Sort


