
Linked Lists, Stacks, and Queues

Yufei Tao

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



In a nutshell, a data structure describes how data are stored in memory,
in order to facilitate certain operations. In all the problems we have
studied so far, the input set of elements is always stored in an array—this
is the only data structure (albeit a simple one) we have so far.

In this lecture, we will learn another simple data structure—the linked

list—for managing a set. Then, we will utilize a linked list to implement

two other slightly more sophisticated structures: the stack and the queue.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



As mentioned earlier, so far we have been using an array to store a set of
elements. Recall that an array is a sequence of consecutive memory cells.
This requires that its length ` be specified at the time it is created, which
creates two issues:

It is not generally possible to increase the length as we wish,
because the memory cells immediately after the array may have
been allocated for other purposes.

Sometimes we may want to reduce the space consumption by
shrinking an array, if the set has some elements removed. It is not
easy to achieve the purpose easily.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Linked List

Next, we introduce the linked list, which is a sequence of nodes such
that:

The information of each node is stored in consecutive memory cells.
The node’s address is the address of the first cell.

Every node stores pointers to its succeeding and preceding nodes (if
they exist), where a pointer to a node u is simply the address of u.

We will refer to the pointer to the succeeding node as the
previous-pointer, and the one to the succeeding node as the
next-pointer.

The first node of a linked list is called the head, and the last node is

called the tail.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Linked List

The figure below shows the memory contents of a linked list of three
nodes u1, u2, u3, whose addresses are a, b, and c , respectively.

a bc

cabb⊥ ⊥u1 u2u3

address

The previous-pointer of node u1 (the head) is nil, denoted by ⊥. The
next-pointer of u3 (the tail) is also nil.

Each node can be stored anywhere in memory. Furthermore, the
addresses of the nodes do not need to follow the ordering of the
nodes in the linked list.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Example

Below is a possible linked for storing a set of 5 integers
{14, 65, 78, 33, 82}.

78

b c

a c 65

a d e

3382 14⊥ b b dc e d ⊥

The linked list stores the sequence (65, 78, 33, 82, 14), as shown in the
logical view below:

65 78 33 82 14

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Two (Simple) Facts about a Linked List

Suppose that we use a linked list to store a set S of n integers (one node
per integer).

Fact 1: The linked list uses O(n) space, namely, it occupies O(n)
memory cells.

Fact 2: Starting from the head node, we can enumerate all the
integers in S in O(n) time.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



A major advantage of using a linked list to manage a set S is that
it supports updates to the set including:

Insertion: Add a new element to S .

Deletion: Remove an existing element from S .

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Insertion into a Linked List

To insert a new element e into S , we simply append e to the linked list:

1 Identify the tail node u.

2 Create a new node unew . Store e in unew .

3 Set the next-pointer of u to the address of unew .

4 Set the previous-pointer of unew to the address of u.

After the insertion, unew becomes the new tail of the linked list.

Time of Insertion

If we already know the address of the tail node, an insertion takes O(1)

time.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Example

Before the insertion:

78

b c

a c 65

a d e

3382 14⊥ b b dc e d ⊥

65 78 33 82 14

After inserting 57:

78

b c

a c 65

a d e

3382 14⊥ b b dc e d f

f

57 e ⊥

65 78 33 82 14 57

Remember: the address of the new node can be anywhere in the memory.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Deletion from a Linked List

Given a pointer to (i.e., the address of) a node u in the linked list, we
can delete it as follows:

1 Identify the preceding node uprec of u.

2 Identify the succeeding node usucc of u.

3 Set the next-pointer of uprec to the address of usucc .

4 Set the previous-pointer of usucc to the address of uprec .

5 Free up the memory of u.

Time of Deletion

Obviously O(1).

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Example

Before the deletion:

78

b c

a c 65

a d e

3382 14⊥ b b dc e d f

f

57 e ⊥

65 78 33 82 14 57

After deleting 78:

c

65

a d e

3382 14⊥ c a dc e d f

f

57 e ⊥

65 33 82 14 57

Remember: the address of the new node can be anywhere in the memory.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Performance Guarantees of the Linked List

When used to manage a set of n integers:

Space O(n)

Insertion O(1) time: if the address of the tail is known.

Deletion O(1) time: if the address of the node to be removed is
known.

O(n) time to enumerate all the elements in the set: if the address
of the head/tail is known.

Remark: We have explained how to perform an insertion by ap-
pending it to the end. Since the node ordering in a linked list can
be arbitrary, there are many other ways of performing an insertion
in O(1) time. For example, you can do so by inserting the new
element at the beginning of the linked list (think: how?).

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Next, we will deploy the linked list to implement two data struc-
tures: stack and queue.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Stack

The stack on a set S of n elements supports two operations:

Push(e): Inserts a new element e into S .

Pop: Removes the most recently inserted element from S , and
returns it.

In other words, a stack obeys the rule of First-in-Last-Out (FILO).

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Example

At the beginning, the stack is empty. Consider the following sequence of
operations:

Push(35): S = {35}.

Push(23): S = {35, 23}.

Push(79): S = {35, 23, 79}.

Pop: Returns 79, and removes it from S . Now S = {35, 23}.

Pop: Returns 23, and removes it from S . Now S = {35}.

Push(47): S = {35, 47}.

Pop: Returns 47, and removes it from S . Now S = {35}.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Implementing a Stack with a Linked List

At all times, we store the elements of the underlying set S in a linked list
L.

Push(e): Insert e at the end of L.
Pop: Delete the tail node of L, and return the element stored in the tail.

At all times, we keep track of the address of the tail node.

Guarantees:

(n) space consumption, where n is the size of S .

Push in O(1) time.

Pop in O(1) time.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Queue

The queue on a set S of n elements supports two operations:

En-queue(e): Inserts a new element e into S .

De-queue: Removes the least recently inserted element from S , and
returns it.

Obeys first-in-first-out (FIFO).

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Example

At the beginning, the queue is empty. Consider the following sequence of
operations:

En-queue(35): S = {35}.

En-queue(23): S = {35, 23}.

En-queue(79): S = {35, 23, 79}.

De-queue: Returns 35, and removes it from S . Now S = {23, 79}.

De-queue: Returns 23, and removes it from S . Now S = {79}.

En-queue(47): S = {79, 47}.

De-queue: Returns 79, and removes it from S . Now S = {47}.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



Implementing a Queue with a Linked List

At all times, we store the elements of the underlying set S in a linked list
L.

En-queue(e): Insert e at the end of L.
De-queue: Delete the head node of L, and return the element stored in
the head.

At all times, we keep track of the addresses of the head and tail nodes.

Guarantees:

O(n) space consumption, where n is the size of S .

En-queue in O(1) time.

De-queue in O(1) time.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues



At this moment, you should have developed a stronger sense of what is a
data structure, and of what its theoretical guarantees may look like. In
general, a data structure stores a set of elements so that some operations
can be performed efficiently. In terms of guarantees, we typically care
about:

Its space consumption: how many memory cells does it occupy in
the worst case.

The worst-case running time of each of its operations.

COMP3506/7505, Uni of Queensland Linked Lists, Stacks, and Queues


