
Introduction to Greedy Algorithms:
Huffman Codes

Yufei Tao

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

In computer science, one interesting method to design algorithms is to go
greedy, namely, keep doing the thing that gives us the best benefits at
the current moment. Of course, just as in real life, greediness does not
always serve us right—after all, what seems to the best to do now may
not be really the best from a global point of view. Nevertheless, there are
problems where the greedy approach works well, sometimes even
optimally! In this lecture, we will study one such problem which is also a
fundamental problem in coding theory.

Greedy algorithms will be explored further in COMP4500, i.e., the
advanced version of this course. This lecture also serves as a “preview”
for that course.

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Coding

Suppose that we have an alphabet Σ (like the English alphabet). The
goal of coding is to map each alphabet to a binary string—called a
codeword—so that they can be transmitted electronically.

For example, suppose Σ = {a, b, c , d , e, f }. Assume that we agree on
a = 000, b = 001, c = 010, d = 011, e = 100, and f = 101. Then, a
letter such as “bed” will be encoded as 001100011.

We can, however, achieve better coding efficiency (i.e., producing shorter

digital documents) if the frequencies of the letters are known. In general,

more frequent letters should be encoded with less bits. The next slide

shows an example.

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Example

Suppose we know that the frequencies of a, b, c , d , e, f are
0.1, 0.2, 0.13, 0.09, 0.4, 0.08, respectively.

If we encode each letter with 3 digits, then the average number of digits
per letter is apparently 3.

However, if we adopt the encoding of a = 100, b = 111, c = 101,
d = 1101, e = 0, f = 1100, the average number of digits per letter is:

3 · 0.1 + 3 · 0.2 + 3 · 0.13 + 4 · 0.09 + 1 · 0.4 + 4 · 0.08 = 2.37.

So in the long run, the new encoding is expected to save
1− (2.37/3) = 21% of bits!

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Example

You probably would ask: why not just encode the letters as:
e = 0, b = 1, c = 01, a = 10, d = 10, f = 11—namely, encode the next
frequent letter using as few bits as possible?

The answer is: you cannot decode a document unambiguously! For
example, consider the string 10: how do you know whether this is two
letters “be”, or just one letter “d”?

This issue arises because the codeword of a letter happens to be a prefix
of the codeword of another letter. We, therefore, should prevent this,
which has led to an important class of codes in coding theory: the prefix
codes (actually “prefix-free” codes would have been more appropriate,
but the name “prefix codes” has become a standard).

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Example

Consider once again our earlier encoding: a = 100, b = 111, c = 101,
d = 1101, e = 0, f = 1100. Observe that the encoding is “prefix free”,
and hence, allows unambiguous decoding.

For example, what does the following binary string say?

10011010100110011011001101

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

The Prefix Coding Problem

An encoding of the letters in an alphabet Σ is a prefix code if no
codeword is a prefix of another codeword.

For each letter σ ∈ Σ, let freq(σ) denote the frequency of σ. Also,
denote by l(σ) the number of bits in the codeword of σ.

Given an encoding, its average length is calculated as∑
σ∈Σ

freq(σ) · l(σ).

The objective of the prefix coding problem is to find a prefix code for Σ
that has the smallest average length.

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

A Binary Tree View

Let us start to attack the prefix coding problem (which may seem pretty
hard at this moment). The first observation is that every prefix code can
be represented as a binary tree T .

Specifically, at each internal node of T , the edge to its left child
corresponds to 0, and the edge to its right child corresponds to 1. Every
letter σ ∈ Σ corresponds to a unique leaf node z , such that the sequence
of the bits on the edges from the root to z spells out the codeword of σ.

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Example

Consider once again our earlier encoding: a = 100, b = 111, c = 101,
d = 1101, e = 0, f = 1100. The following is the corresponding binary
tree:

f d

a c b

e

0 1

0

0 0

0

1

1

1

1

Think: Why must every letter be at the leaf? (Hint: prefix free)

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Average Length from the Binary Tree

Let T be the binary tree capturing the encoding.

Given a letter σ of Σ, let us denote by d(σ) the depth of σ, which is the
level of its leaf in T (i.e., how many edges the leaf is away from the root).

Clearly, the average length of the encoding equals∑
σ∈Σ

d(σ) · freq(σ).

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Example

f d

a c b

e

0 1

0

0 0

0

1

1

1

1

The depths of e, a, c , f , d , b are 1, 3, 3, 4, 4, 3, respectively. The average
length of the encoding equals

freq(e) · 1 + freq(a) · 3 + freq(c) · 3 + freq(f) · 4 + freq(d) · 4 + freq(b) · 3.

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Huffman’s Algorithm

Next, we will present a surprisingly simple algorithm for solving the prefix
coding problem. The algorithm constructs a binary tree (which gives the
encoding) in a bottom-up manner.

Let n = |Σ|. At the beginning, there are n separate nodes, each
corresponding to a different letter in Σ. If letter σ corresponds to a node
z , define the frequency of z to be equivalent to freq(σ).

Let S be the set of these n nodes.

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Huffman’s Algorithm

Then, the algorithm repeats the following until S has a single node left:

1. Remove from S two nodes u1, u2 with the smallest frequencies.

2. Create a node v that has u1, u2 as children. Set the frequency of v
to be the frequency sum of u1 and u2.

3. Insert v into S .

When S has only node left, we have already obtained the target binary
tree. The prefix code thus derived is called known as a Huffman code.

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Example

Consider our earlier example where the frequencies of a, b, c , d , e, f are
0.1, 0.2, 0.13, 0.09, 0.4, 0.08, respectively.

At the beginning, S has 6 nodes:

fda cb e

4010 20 13 89

The number in each circle represents the frequency of each node (e.g., 10
means 10%).

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Example

Merge the two nodes with the smallest frequencies 8 and 9. Now S has 5
nodes {a, b, c , e, u1}:

a cb e

4010 20 13 17

d

9

f

8

u1

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Example

Merge the two nodes with the smallest frequencies 10 and 13. Now S
has 5 nodes {b, e, u1, u2}:

df

b e

4020

98

17

ca

1310

23u2 u1

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Example

Merge the two nodes with the smallest frequencies 17 and 20. Now S
has 5 nodes {e, u1, u3}:

df

e

40

98

17

ca

1310

23

b

20

37u2 u3

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Example

Merge the two nodes with the smallest frequencies 23 and 37. Now S
has 5 nodes {e, u4}:

df

e

40

98

17

ca

1310

23

b

20

37

60 u4

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Example

Merge the two remaining nodes. Now S has a single node left.

df

e

40

98

17

ca

1310

23

b

20

37

60

100

This is the final binary tree, from which the encoding can now be derived.

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

It should be fairly straightforward for you to implement the algo-
rithm in O(n log n) time, where n = |Σ|.

Think: Why do we say the algorithm is greedy?

Next, we prove that the algorithm indeed gives an optimal prefix
code, i.e., one that has the smallest average length among all the
possible prefix codes.

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Crucial Property 1

Lemma: Let T be the binary tree corresponds to an optimal prefix code.
Then, every internal node of T must have two children.

Proof: Suppose that the lemma is not true. Then, there is an internal
node u with only one child node v . Imagine removing u as follows:

If u is the root, simply make v the new root.

Otherwise, make v a child node of the parent of u.

The above removal generates a new binary tree whose average length is
smaller than that of T , which contradicts the fact that T is optimal. .

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Crucial Property 2

Lemma: Let σ1 and σ2 be two letters in Σ with the lowest frequencies.
There exists an optimal prefix code whose binary tree has σ1 and σ2 as
two sibling leaves at the deepest level.

Proof: Take an arbitrary prefix code with binary tree T . If σ1 and σ2 are
indeed sibling leaves at the deepest level, then the claim already holds.
Next, we assume that this is not the case.

Suppose T has height h. In other words, the deepest leaves have depth
h − 1. Take an arbitrary internal node p at level h − 2—by the previous
lemma, p must have two leaves (at level h − 1). Let σ′

1 and σ′
2 be the

letters corresponding to those leaves.

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Crucial Property 2

Proof (cont.): Now swap σ1 with σ′
1, and σ2 with σ′

2, which gives a new
binary tree T ′. Note that T ′ has σ1 and σ2 as sibling leaves at the
deepest level.

How does the average length of T ′ compare with that of T? As the
frequency of σ1 is no higher than that of σ′

1, swapping the two letters can
only decrease the average length of the tree (i.e., as we are assigning a
shorter codeword to a more frequent letter). Similarly, the other swap
can only decrease the average length.

It follows that the average length of T ′ is no larger than that of T ,
meaning that T ′ is optimal as well.

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Optimality of Huffman Coding

We are now ready to prove:

Theorem: Huffman’s algorithm produces an optimal prefix code.

Proof: We will prove by induction on the size n of the alphabet Σ.

Base Case: n = 2. In this case, the algorithm encodes one letter with 0,
and the other with 1, which is clearly optimal.

General Case: Assuming that the theorem holds for n = k − 1 (k ≥ 3),
next we show that it also holds for n = k .

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Optimality of Huffman Coding

Proof (cont.): Let σ1 and σ2 be two letters with the lowest frequencies.
From Property 2, we know that there is an optimal prefix code whose
binary tree T has σ1 and σ2 as two sibling leaves at the deepest level.
Let p be the parent of σ1 and σ2.

Construct a new alphabet Σ′ that includes all letters in Σ, except σ1 and
σ2, but a letter p whose frequency equals f (σ1) + f (σ2). Let T ′ be the
tree obtained by removing leaf nodes σ1 and σ2 from T (thus making p a
leaf). T ′ gives a prefix code for Σ′.

Let T ′ be the binary tree obtained by Huffman’s algorithm on Σ′. Since
|Σ′| = k − 1, we know that T ′ is optimal, meaning that

avg length of T ′ ≤ avg length of T ′

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

Optimality of Huffman Coding

Proof (cont.): Now consider the binary tree T produced by Huffman’s
algorithm on Σ. Clearly, T extends T ′ by simply putting σ1 and σ2 as
child nodes of p. Hence:

avg length of T = avg length of T ′ + f (σ1) + f (σ2)

≤ avg length of T ′ + f (σ1) + f (σ2)

= avg length of T .

This indicates that T also gives an optimal prefix code.

COMP3506/7505, Uni of Queensland Introduction to Greedy Algorithms: Huffman Codes

