Hashing

Yufei Tao

ITEE
University of Queensland

, Uni of Queensland Hashing

In this lecture, we will revisit the dictionary search problem, where we
want to locate an integer v in a set of size n or declare the absence of v.
Recall that binary search solves the problem in O(log n) time. We will
bring down the cost to O(1) in expectation.

Towards the purpose, we will learn our first randomized data structure in
this course. The structure is called the hash table.

, Uni of Queensland Hashing

(The Dictionary Search Problem (Redefined))

S is a set of n integers. We want to preprocess S into a data structure so
that queries of the following form can be answered efficiently:

@ Given a value v, a query asks whether v € §.

We will measure the performance of the data structure by examin-
ing its:

@ Space consumption: How many memory cells occupied.
@ Query cost: Time of answering a query.

@ Preprocessing cost: Time of building the data structure.

, Uni of Queensland Hashing

(Dictionary Search—Solution Based on Binary Search)

We can solve the problem by sorting S into an array of length n, and
using binary search to answer a query. This achieves:

@ Space consumption: O(n).
@ Query cost: O(log n).

@ Preprocessing cost: O(nlog n).

COMP3506/7505, Uni of Queensland Hashing

(Dictionary Search—This Lecture (the Hash Table))

We will improve the previous solution in expectation:
@ Space consumption: O(n).
@ Query cost: O(logn) = O(1) in expectation.

@ Preprocessing cost: O(nlogn) = O(n).

COMP3506/7505, Uni of Queensland Hashing

The main idea of hashing is to divide the dataset S into a number m of
disjoint subsets such that:

@ only one subset needs to be searched to answer any query.

, Uni of Queensland Hashing

Let Z denote the set of all integers, and [m] the set of integers from 1 to
m.

A hash function h is a function from Z to [m]. Namely, given any
integer k, h(k) returns an integer in [m].

The value h(k) is called the hash value of k.

COMP3506/7505, Uni of Queensland Hashing

Any hash function produces a hash table that correctly solves the
dictionary search problem. However, the quality of the function has
a heavy impact on the query efficiency.

, Uni of Queensland Hashing

(Hash Table — Preprocessing)

First, choose an integer m > 0, and a hash function h from Z to [m].

Then, preprocess the input S as follows:
© Create an array H of length m.

@ For each i € [1, m], create an empty linked list L;. Keep the head
and tail pointers of L; in H[i].

@ For each integer x € S:

o Calculate the hash value h(x).
o Insert x into Ly(y).

Space consumption: O(n—+ m).
Preprocessing time: O(n + m).

We will always choose m = O(n), so O(n+ m) = O(n).

COMP3506/7505, Uni of Queensland Hashing

(Hash Table — Querying)

We answer a query with value v as follows:
@ Calculate the hash value h(v).

@ Scan the whole Lp(vy.- If v is not found, answer “no”; otherwise,
answer “yes".

Query time: O(|Lp(vy|), where |Ly(,)| is the number of elements in

COMP3506/7505, Uni of Queensland Hashing

Let S = {34,19,67,2,81,75,92,56}. Suppose that we choose m =5,
and h(k) =14 (k mod m).

H

L | —» ' NIL
EROESEE
RN AENCE

Ly | —» NIL
BN ERDE

To answer a query with search value 68, we scan all the elements in L3,

~
S
|

and answer “no”. For this hash function, the maximum query time is the
cost of scanning a linked list of 3 elements.

, Uni of Queensland Hashing

Let S = {34,19,67,2,81,75,92,56}. Suppose that we choose m = 5,

and h(k) = 2.
H
Ly | —|» NIL
b [o T [] o (2] e] 3 of e ol s
Ly | —l»NIL
Ly | —{» NIL
Ls | —» NIL

For this hash function, the maximum query time is the cost of scanning a
linked list of 8 elements (i.e., the worst possible).

COMP3506/7505, Uni of Queensland Hashing

It is clear that a good hash function should create linked lists of
roughly the same size, i.e., “spreading out” the elements of S as
evenly as possible.

In order to achieve O(1) expected query time, we require that the hash
function h (from Z to [m]) should be chosen from a large family of
functions to ensure the following 2-universal property:

The following holds for any two different integers ki, ko:

Prih(k) = hke)] < —

- m

COMP3506/7505, Uni of Queensland Hashing

Next, we will first prove that 2-universality gives us the desired
O(1) expected query time. Then, we will describe a way to obtain
such a good hash function.

, Uni of Queensland Hashing

(Analysis of Query Time under 2—Universa|ity)

We focus on the case where g does not exist in S (the case where it does
is similar). Recall that our algorithm probes all the elements in the linked
list Ly(q)- The query cost is therefore O(|Lpq)l)-

Define random variable X; (i € [1, n]) to be 1 if the i-th element e of S
has the same hash value as g (i.e., h(e) = h(q)), and 0 otherwise. Thus:

Ln)| =Y X;
=1

COMP3506/7505, Uni of Queensland Hashing

(Analysis of Query Time under 2—Universa|ity)

By 2-universality, Pr[X; = 1] < 1/m, meaning that

E[X,] = 1- Pr[X,- =].] +0- PI’[X,' = 0]
< 1/m.
Hence:
ElLugll = D E[X]<n/m.
i=1

By choosing m = ©(n), we have n/m = O(1).

COMP3506/7505, Uni of Queensland Hashing

(Designing a 2-Universal Function)

@ Pick a prime number p > m.

@ Choose a number « uniformly at random from 1,...,p — 1.
@ Choose a number 8 uniformly at random from 0, ..., p — 1.
@ Construct a hash function:

h(k) =14 (((ak+) mod p) mod m)

The proof of 2-universality is not required in this course, but will
be covered in the training camp.

COMP3506/7505, Uni of Queensland Hashing

Now officially we have shown that, for any set S of n integers, it is
always possible to construct a hash table with the following guarantees
on the dictionary search problem:

@ Space O(n).
@ Preprocessing time O(n).

@ Query time O(1) in expectation.

, Uni of Queensland Hashing

