Hashing

Yufei Tao

ITEE University of Queensland

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

In this lecture, we will revisit the dictionary search problem, where we want to locate an integer v in a set of size n or declare the absence of v. Recall that binary search solves the problem in $O(\log n)$ time. We will bring down the cost to O(1) in expectation.

Towards the purpose, we will learn our first randomized data structure in this course. The structure is called the hash table.

The Dictionary Search Problem (Redefined)

S is a set of n integers. We want to preprocess S into a data structure so that queries of the following form can be answered efficiently:

• Given a value v, a query asks whether $v \in S$.

We will measure the performance of the data structure by examining its:

- Space consumption: How many memory cells occupied.
- Query cost: Time of answering a query.
- Preprocessing cost: Time of building the data structure.

Dictionary Search—Solution Based on Binary Search

We can solve the problem by sorting S into an array of length n, and using binary search to answer a query. This achieves:

- Space consumption: O(n).
- Query cost: $O(\log n)$.
- Preprocessing cost: $O(n \log n)$.

Dictionary Search—This Lecture (the Hash Table)

We will improve the previous solution in expectation:

- Space consumption: O(n).
- Query cost: $O(\log n) \Rightarrow O(1)$ in expectation.
- Preprocessing cost: $O(n \log n) \Rightarrow O(n)$.

The main idea of hashing is to divide the dataset S into a number m of disjoint subsets such that:

• only one subset needs to be searched to answer any query.

Hash Function

Let \mathbb{Z} denote the set of all integers, and [m] the set of integers from 1 to m.

A hash function h is a function from \mathbb{Z} to [m]. Namely, given any integer k, h(k) returns an integer in [m].

The value h(k) is called the *hash value* of k.

Any hash function produces a hash table that correctly solves the dictionary search problem. However, the quality of the function has a heavy impact on the query efficiency.

Hash Table – Preprocessing

First, choose an integer m > 0, and a hash function h from \mathbb{Z} to [m].

Then, preprocess the input S as follows:

- **1** Create an array H of length m.
- 2 For each $i \in [1, m]$, create an empty linked list L_i . Keep the head and tail pointers of L_i in H[i].
- Solution For each integer $x \in S$:
 - Calculate the hash value h(x).
 - Insert x into $L_{h(x)}$.

Space consumption: O(n+m). Preprocessing time: O(n+m).

We will always choose m = O(n), so O(n + m) = O(n).

Hash Table – Querying

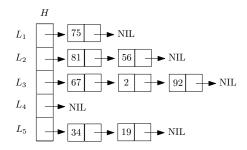
We answer a query with value v as follows:

- **1** Calculate the hash value h(v).
- Scan the whole $L_{h(v)}$. If v is not found, answer "no"; otherwise, answer "yes".

Query time: $O(|L_{h(v)}|)$, where $|L_{h(v)}|$ is the number of elements in $L_{h(v)}$.

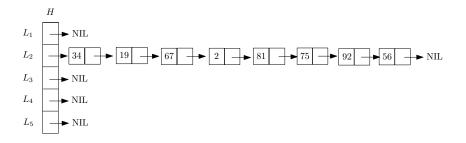
Example

Let $S = \{34, 19, 67, 2, 81, 75, 92, 56\}$. Suppose that we choose m = 5, and $h(k) = 1 + (k \mod m)$.



To answer a query with search value 68, we scan all the elements in L_3 , and answer "no". For this hash function, the maximum query time is the cost of scanning a linked list of 3 elements.

Let $S = \{34, 19, 67, 2, 81, 75, 92, 56\}$. Suppose that we choose m = 5, and h(k) = 2.



For this hash function, the maximum query time is the cost of scanning a linked list of 8 elements (i.e., the worst possible).

It is clear that a good hash function should create linked lists of roughly the same size, i.e., "spreading out" the elements of S as evenly as possible.

In order to achieve O(1) expected query time, we require that the hash function h (from \mathbb{Z} to [m]) should be chosen from a large family of functions to ensure the following 2-universal property:

The following holds for any two different integers k_1, k_2 :

$$\boldsymbol{Pr}[h(k_1)=h(k_2)] \leq \frac{1}{m}$$

Next, we will first prove that 2-universality gives us the desired O(1) expected query time. Then, we will describe a way to obtain such a good hash function.

Analysis of Query Time under 2-Universality

We focus on the case where q does not exist in S (the case where it does is similar). Recall that our algorithm probes all the elements in the linked list $L_{h(q)}$. The query cost is therefore $O(|L_{h(q)}|)$.

Define random variable X_i $(i \in [1, n])$ to be 1 if the *i*-th element *e* of *S* has the same hash value as *q* (i.e., h(e) = h(q)), and 0 otherwise. Thus:

$$|L_{h(q)}| = \sum_{i=1}^n X_i$$

Analysis of Query Time under 2-Universality

By 2-universality, $Pr[X_i = 1] \le 1/m$, meaning that

$$\begin{aligned} \boldsymbol{E}[X_i] &= 1 \cdot \boldsymbol{Pr}[X_i = 1] + 0 \cdot \boldsymbol{Pr}[X_i = 0] \\ &\leq 1/m. \end{aligned}$$

Hence:

$$\boldsymbol{E}[|L_{h(q)}|] = \sum_{i=1}^{n} \boldsymbol{E}[X_i] \leq n/m.$$

By choosing $m = \Theta(n)$, we have $n/m = \Theta(1)$.

Designing a 2-Universal Function

- Pick a prime number $p \ge m$.
- Choose a number α uniformly at random from 1, ..., p 1.
- Choose a number β uniformly at random from 0, ..., p 1.
- Construct a hash function:

$$h(k) = 1 + (((\alpha k + \beta) \mod p) \mod m)$$

The proof of 2-universality is not required in this course, but will be covered in the training camp.

Now officially we have shown that, for any set S of n integers, it is always possible to construct a hash table with the following guarantees on the dictionary search problem:

- Space O(n).
- Preprocessing time O(n).
- Query time O(1) in expectation.