
Binary Search and Worst-Case Analysis

Yufei Tao

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



A significant part of computer science is devoted to understanding the
power of the RAM model in solving specific problems. Every time we
discuss a problem in this course, we will learn something new.

Today’s lecture is about the dictionary search problem. We will learn not

only a fast algorithm for solving this problem, but also a method called

worst-case analysis for measuring the quality of an algorithm.

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



The Dictionary Search Problem

Problem Input:

In the memory, a set S of n integers have been arranged in ascending
order at the memory cells from address 1 to n. The value of n has been
placed in Register 1 of the CPU. Another integer v has been placed in
Register 2 of the CPU.

Goal:

Design an algorithm to determine whether v exists in S .

Note that we have not specified how your algorithm should indicate
the outcome. This is up to you. For example, you may store 0 in
a certain register to signify “no”, and 1 for “yes”.

We will refer to the value of n as the problem size.

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



A “yes”-input with n = 16

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16 35

A “no”-input with n = 16

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16 36

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



The First Algorithm

Let n be Register 1, and v be Register 2.

Simply read the memory cell of address i , for each i ∈ [1, n] in turn. If
any of those cells equals v , return yes. Otherwise, return no.

The above is a concise, but clear, description of the same algorithm
as in the pseudocode of the next slide.

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



The First Algorithm in Pseudocode

1. Let n be register 1, and v be register 2
2. register i ← 1, register one ← 1
3. while i ≤ n
4. read into register x the memory cell at address i
5. if x = v then
6. return “yes”
7. i ← i + one (effectively increasing i by 1)
8. return “no”

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



Running Time of the First Algorithm

How much time does the algorithm require? The answer depends on the
problem input. Here are two extreme cases:

If v is the first element in S (i.e., the integer in the memory cell of
address 1), the algorithm has running time 6.

If we are given a “no”-input, then the algorithm has running time
4n + 4.

In computer science, it is an art to design algorithms with perfor-
mance guarantees. In our scenario, this amounts to the question:
what is the largest running time on the worst input with n integers?

This gives rise to an important notion in the next slide.

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



Worst-Case Running Time

The worst-case cost (or worst-case time) of an algorithm under a

problem size n, is defined to be the largest running time of the algorithm

on all the (possibly infinite) distinct inputs of the same size n.

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



Example

Our algorithm has worst-case time f1(n) = 4n + 4.

In other words, no matter how you design the input set S of n integers,

the algorithm always terminates with a cost at most 4n + 4. This is its

performance guarantee on every n.

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



Next, we will see another algorithm with much better worst-case
time, namely, the binary search algorithm.

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



Binary Search

We will utilize the fact that S has been stored in ascending order. Let us
compare v to the element x in the middle of S (i.e., the (n/2)-th).

If v = x , we have found v , and thus, can terminate.

If v < x , we can immediately forget about the second half of S .

If v > x , forget about the first half.

In the 2nd and 3rd cases, we have at most n/2 elements left.
Then, repeat the trick on those elements!

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



Binary Search

...

5 9 12 17 26 28 35 38 41 47 52 68 69 72 83 88

16 35

Conceptually discard the second half of S .

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



Binary Search

...

5 9 12 17 26 28 35

16 35

Conceptually discard the first half of what is shown.

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



Binary Search

...

26 28 35

16 35

Conceptually discard the first half of what is shown.

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



Binary Search

...

35

16 35

Found.

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



Binary Search in Pseudocode

1. let n be register 1, and v be register 2
2. register left ← 1, right ← n
3. while left ≤ right
4. register mid ← (left + right)/2
5. if the memory cell at address mid = v then
6. return “yes”
7. else if the memory cell at address mid > v then
8. right = mid − 1
9. else
10. left = mid + 1
11. return “no”

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



Worst-Case Time of Binary Search

Let us call the integers whose memory addresses are from left to right as
active elements.

Refer to Lines 3-10 as an iteration. Each iteration performs at most 6
atomic operations (try verifying this yourself).

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



Worst-Case Time of Binary Search

How many iterations are there? After the first iteration, the number of
active elements is at most n/2. After another, the number is at most
n/4. In general, after i iterations, the number drops to at most n/2i .

Suppose that there are h iterations in total. It holds that (think: why?)

n

2h
≥ 1

which gives h ≤ log2 n.

It thus follows that the worst-case time of binary search is at most
f2(n) = 2 + 6 log2 n. This is a performance guarantee that holds on all
values of n.

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis



In this lecture, we have got a taste of what computer science is like. We

are seldom satisfied with just finding an algorithm that can correctly

solve a problem. Instead, our goal is to design an algorithm with a strong

performance guarantee, i.e., you must prove that it runs fast even in the

worst case.

COMP3506/7505, Uni of Queensland Binary Search and Worst-Case Analysis


