
Binary Search Tree (Part 2 – The AVL-tree)

Yufei Tao

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



We have already learned a static version of the BST. In this
lecture, we will make the structure dynamic, namely, allowing it to
support updates (i.e., insertions and deletions). The dynamic
version we will learn is called the AVL-tree.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Recall:

Binary Search Tree (BST)

A BST on a set S of n integers is a binary tree T satisfying all the
following requirements:

T has n nodes.

Each node u in T stores a distinct integer in S , which is called the
key of u.

For every internal u, it holds that:

– The key of u is larger than all the keys in the left subtree of u.
– The key of u is smaller than all the keys in the right subtree of

u.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Recall:

Balanced Binary Tree

A binary tree T is balanced if the following holds on every internal node
u of T :

The height of the left subtree of u differs from that of the right
subtree of u by at most 1.

If u violates the above requirement, we say that u is imbalanced.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



AVL-Tree

An AVL-tree on a set S of n integers is a balanced binary search tree T
where the following holds on every internal node u

u stores the heights of its left and right subtrees.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Example

An AVL-tree on S = {3, 10, 15, 20, 30, 40, 60, 73, 80}

40

15 73

3010 60 80

3 20

3 2

2 2

1 0 1 0

1 1

For example, the numbers 3 and 2 near node 40 indicate that its left
subtree has height 3, and its right subtree has height 2.

By storing the subtree heights, an internal node knows
whether it has become imbalanced.

The left subtree height of an internal node can be obtained
in O(1) time from its left child (how?). Similarly for the
right.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Next, we will explain how to perform updates. The most crucial
step is to remedy a node u when it becomes imbalanced.

It suffices to consider a scenario called 2-level imbalance. In this
situation, two conditions apply:

There is a difference of 2 in the heights of the left and right
subtrees of u.

All the proper descendants of u are balanced.

Before delving into the insertion and deletion algorithms, we will
first explain how to rebalance u in the above situation.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



2-Level Imbalance

There are two cases:

h + 2hh + 2 h

Due to symmetry, it suffices to explain only the left case, which can be

further divided into a left-left and a left-right case, as shown next.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



2-Level Imbalance

h + 1

h

h + 1

h

h or h + 1
h

Left-left Left-Right

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Rebalancing Left-Left

By a rotation:

h + 1

h

b

C

CB BA

A

b

a

a

⇒h + 1 x

h + 2 h h + 1

hx

x + 1

Only 3 pointers to change (the red ones). The cost is O(1).

Recall x = h or h + 1.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Rebalancing Left-Right

By a double rotation:

⇒ h

b

c

h+ 1

h

a

b

A

C

⇒

c

b

A

B

B

a

C

D

D

a
hh+ 2

h+ 1h

hh+ 2

h+ 1h

x y

x yh h

h+ 1h+ 1

Only 5 pointers to change (see above). Hence, the cost is O(1).

Note that x and y must be h or h − 1. Furthermore, at least one
of them must be h (why?).

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



We are now to explain the insertion algorithm

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Insertion

Suppose that we need to insert a new integer e. First create a new leaf z
storing the key e. This can be done by descending a root-to-leaf path:

1 Set u ← the root of T

2 If u is a leaf node:

2.1 If the key of u > e, make z the left child of u, and done.
2.2 Otherwise, make z the right child of u, and done.

3 Otherwise (i.e., u is an internal node):

2.1 If the key of u > e, set u to the left child.
2.2 Otherwise, set u to the right child.

4 Repeat from Line 2.

Finally, update the subtree height values on the nodes of the root-to-z

path in the bottom-up order. The total cost is proportional to the height

of T , i.e., O(log n).

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Example

Inserting 35:

40

15 73

3010 60 80

353 20

1

22

3

1

The red height values are modified by this insertion.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Example

An insertion may cause the tree to become imbalanced!

40

15 73

3010 60 80

35

40

15 73

3010 60 80

3 35

361

203 20

In the left tree, nodes 10 and 40 become imbalanced, whereas in the

right, node 40 is now imbalanced.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Imbalance in an Insertion

...

Only the nodes along the path from the insertion path (from the root to

the newly added leaf) can become imbalanced. It suffices remedy only

the lowest imbalanced node.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Left-Left Example

h + 1

h

b

C

CB BA

A

b

a

a

⇒h + 1 x

h + 2 h h + 1

hx

x + 1

⇒

3 20

40

15 73

60 8030

35

1

10

20

40

15 73

60 803 30

35101

2 0

1 0

1 1

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Left-Right Example

⇒ h

b

c

h+ 1

h

a

b

A

C

⇒

c

b

A

B

B

a

C

D

D

a
hh+ 2

h+ 1h

hh+ 2

h+ 1h

x y

x yh h

h+ 1h+ 1

40

73

60 80 ⇒

30

73

60 80

40

30

36

35 36

35

15

3

15

10

3 20

2010

4 2

2 3

1 2

3 3

222 1

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Insertion Time

...

It will be left as an exercise for you to prove:

Only 2-level imbalance can occur in an insertion.

Once we have remedied the lowest imbalanced node, all the nodes
in the tree will become balanced again.

The total insertion time is therefore O(log n).

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



We now proceed to explain the deletion algorithm.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Deletion

Suppose that we want to delete an integer e. First, find the node u
whose key equals e in O(log n) time (through a predecessor query).

Case 1: If u is a leaf node, simply remove it from (the AVL-tree) T .

Case 1 Example

Remove 60:

30

4015

3

2010 35

36

73

60

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Deletion

Now suppose that node u (containing the integer e to be deleted) is not
a leaf node. We proceed as follows:

Case 2: If u has a right subtree:

Find the node v storing the successor s of e.
Set the key of u to s
Case 2.1: If v is a leaf node, then remove it from T .
Case 2.2: Otherwise, it must hold that v has a right child w ,
which is a leaf (why?), but not left child. Set the key of v to
that of w , and remove w from T .

Case 3: If u has no right subtree:

It must hold that u has a left child v , which is a leaf. (why?)
Set the key of u to that of v , and remove v from T .

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Case 2.1 Example

Delete 40:

30

4015

3

2010 35

36

30

15

3

2010 35

36

73

60

73

60
⇒

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Case 2.2 Example

Delete 30:

30

4015

3

2010 35

36

35

15

3

2010 3673

60

73

60
⇒

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Case 3 Example

30

4015

3

2010 35

36

30

15

3

2010 35

36

73

60

60

40
⇒

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Deletion

...

In all the above cases, we have essentially descended a root-to-leaf path
(call it the deletion path), and removed a leaf node. We can now update
the subtree height values for the nodes on this path in the bottom-up
order.

The cost so far is O(log n). Recall that the successor of an integer can be

found in O(log n) time.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Imbalance in a Deletion

...

Only the nodes along the deletion path may become imbalanced.

We fix each of them in the bottom-up order in exactly the same way
as described for insertions, namely, using either a rotation or double
rotation.

Unlike an insertion, we may need to remedy more than one
imbalanced node.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Left-Left Example 1

Delete 30:

⇒

30

4015

3

2010 35

35

4015

3

2010

Node 35 becomes imbalanced – a left-left case handle by a rotation:

⇒

35

4015

3

2010

15

10 35

403 20

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Left-Left Example 2

Delete 30:

⇒

30

4015

3

2010 35

35

4015

3

2010

25 25

Node 35 becomes imbalanced – also a left-left case handle by a rotation:

⇒

35

4015

3

10

25

15

3 40

3510

20

25

20

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Left-Right Example

Delete 40:

30

4015

3

2010 35

36

73

⇒

30

15 73

36

3510

3

20

2517

27

2517

27

Node 73 becomes imbalanced – a left-right case handled by a double
rotation. See the next slide.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Left-Right Example

30

36
⇒

35 73

30

73

36

35

15

10

3

20

15

10

3

20

2517

27

2517

27

Node 30 is still imbalanced – a left-right case handled by a double

rotation. See next.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Left-Right Example

30

36
⇒

35 73

15

10

3

20

2517

27

30

36

35 73

2517

27

15

10

3

20

Final tree after the deletion. Note that this deletion required fixing 2

imbalanced nodes.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



Deletion Time

...

It will be left as an exercise for you to prove that

Only 2-level imbalance can occur in an insertion.

Since we spend O(1) time fixing each imbalanced nodes, the total

deletion time is O(log n).

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)



We now conclude our discussion on the AVL-tree, which provides the
following guarantees:

O(n) space consumption.

O(log n) time per predecessor query (hence, also per dictionary
lookup).

O(log n) time per insertion

O(log n) time per deletion.

All the above complexities hold in the worst case.

COMP3506/7505, Uni of Queensland Binary Search Tree (Part 2 – The AVL-tree)


