COMP3506/7505: Regular Exercise Set 8

Prepared by Yufei Tao

Problem 1. In the class, we proved that if f(h) denotes the smallest number of nodes in a balanced
binary tree of height h, it must hold that

f(h) = 1+ f(h—1)+ f(h—2).

Give a balanced binary tree of height 6 with f(6) nodes.

Solution.

Problem 2. Let T be a binary tree of n nodes. For each node w of T', define its count as the
number of nodes in its subtree (remember that the subtree includes the node itself). Describe an
algorithm to compute the counts of all the nodes in 7" (you can assume that each node has reserved
a memory cell for you to store the count). Your algorithm must terminate in O(n) time.

Solution. We will design a recursive algorithm to perform a post order traversal of T. This
algorithm at its termination will have computed the counts of all the nodes.

If the tree has only a single node, set its count to 1 and return. Otherwise, the algorithm
proceeds as follows:

e Recursively compute the counts of all the nodes in the left subtree of the root.
e Recursively compute the counts of all the nodes in the right subtree of the root.

e Let ¢ be the count of the left child, and ¢y be the count of the right child. Set the count of
the root to 1+ ¢1 + co.

To see that the running time is O(n), observe that the algorithm essentially crosses each edge
of the tree twice: once from the parent to the child, and another time the other way around. There
are only n — 1 edges in the tree.

Problem 3. Let T be a binary search tree (BST) of on a set S of n integers. Let x and y be
two integers in S. Describe an algorithm to find the lowest common ancestor A of the nodes in T
storing x and y, respectively. If A is at level ¢ (recall that the root is at level 0), your algorithm
must finish in O(1 + ¢) time.

Solution. Without loss of generality, suppose that x < y. Let v be the root of T'. If the key k of
v equals either = or y, return v. Otherwise:

o If z < k <y, report v, and finish.



o If y <k, set v to its left child, and repeat the above steps at (the new) v.

e Otherwise, set v to its right child, and repeat the above steps at (the new) v.

Problem 4. Let T be a binary search tree (BST) of on a set S of n integers. Describe an
O(logn + k)-time algorithm to answer the following query: given an interval [a, b], report all the
integers of S that fall in [a, b]. Here, k is the number of integers reported.

Solution. First, find the successor a’ of a, and the predecessor o' of b. Then, find the lowest
common ancestor, denoted as node A, of the nodes a’ and ¥'. This takes O(logn) time in total.

Denote by II; the path from A to node a’, and IIy the path from A to node b'. For every node
on these two paths, report its key if the key falls in [a,b]. This takes O(logn) time.

For every node u on II; other than A, do the following: if u is the left child of its parent p, then
report all the keys in the right subtree of p. If k, keys are reported, this step takes O(1+ k,,) time.

For every node u on Il; other than A, do the following: if u is the right child of its parent p,
then report all the keys in the left subtree of p. If k, keys are reported, this step takes O(1 + ky,)
time.

Overall the cost is O(logn + k), noticing that

Z k., < k.

uelly UHQ\{A}

Problem 5. Let S be a set of n key-value pairs of the form (¢,v). Denote by m the number
of distinct keys in all the pairs of S. Describe a data structure to support the following queries
efficiently: given an interval [a, b], report all the pairs (¢,v) € S such that ¢ € [a, b]. Your structure
must use O(n) space, and answer a query in O(logm + k) time, where k is the number of pairs
reported.

Solution. Create a BST on the m distinct keys. At each node u of the tree, use a linked list to
chain up all the key-value pairs (¢,v) where ¢ equals the key of u. The query algorithm is the same
as the one for Problem 4, except that for every node u whose key falls in [a, b], we should report
everything in its linked list.



