
COMP3506/7505: Regular Exercise Set 7

Prepared by Yufei Tao

Problems marked with an asterisk may be difficult. Problem 1 is very hard.

Problem 1** (Dynamic Hashing). Consider the following dynamic dictionary search problem.
Let S be a dynamic set of integers. At the beginning, S is empty. We want to support the following
operations:

• Insert(e): Adds an integer e to S.

• Delete(e): Removes an integer e from S.

• Query(q): Determines whether q belongs to the current set.

Design a data structure with the following guarantees:

• At all times, the space consumption is O(|S|), i.e., linear to the number of elements currently
in S.

• For any sequence of n operations (each being an insert, delete, or query), your algorithm
must use O(n) expected time in total.

Solution. If |S| ≤ 4, we simply store the entire |S| in an array of length 4. If |S| > 4, we will
maintain the hash function h whose output domain is [m], with m being a power of 2 and satisfying
|S| ≤ m ≤ 4|S|. Accordingly, we also maintain a hash table T computed using h. Insert(e) is
processed by inserting e into the linked list in T corresponding to the hash value h(e). Similarly,
delete(e) is processed by scanning the entire linked list of h(e), and removing e from there.

If after an insertion |S| reaches m, we double m, and reconstruct the hash table by randomly
selecting a new hash function h whose output domain is [m] (note that the domain size has doubled).
If after a deletion |S| equals m/4, we halve m, and reconstruct the hash table by randomly selecting
a new hash function h whose output domain is [m]. The amortized insertion/deletion cost is O(1)
by the same analysis we did for dynamic arrays.

A query is answered in the same way as discussed in the class.

An insertion obviously is handled in O(1) time. The expected running time of a deletion is the
same as that of a query, which is O(1) when we choose h from universal family explained in the
class. The space consumption is O(|S|) at all times.

Problem 2. Prove: A tree with n nodes has n− 1 edges.

Solution. We will prove the claim by induction. The case of n = 1 is obviously true. Now suppose
that the claim is true for all n ≤ k, we now proceed to prove that it is also true for n = k + 1. Let
T be a tree with k + 1 nodes. Remove an arbitrary edge of T . The fact that the original T has no
cycle implies that now T has been divided into two trees T1 and T2. If T1 has x nodes, then T2 has
k+1−x nodes. Our inductive claim shows that T1 has x−1 edges and T2 has k+1−x−1 = k−x
edges. Therefore, T has (x− 1) + (k − x) + 1 = k edges. This completes the proof.
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Problem 3 (Max Heap). The binary heap we discussed in the class is called the min-heap
because of the delete-min operation. Conversely, a max-heap on a set S of integers aims to
support insertions and the following delete-max operation:

• Delete-max: Reports the largest integer in S, and removes it from S.

Describe how a min-heap can be used to implement a max-heap without changing its structure and
algorithms. Your max-heap must still use O(|S|) space, and support an insertion and a delete-max
operation in O(log |S|) time.

Solution. To perform an insertion of e, simply insert −e to a min-heap. To perform a delete-max,
simply perform a delete-min from the min-heap, and then return the fetched value after negating
it.

Problem 4. This is a question only for the students that did not attend the training camp. Let A
be an array of length n that stores a set S of n integers. The array is not sorted. Give an algorithm
to find the

√
n-th smallest integer in S. Your algorithm must terminate in O(n) time.

Solution. Create a binary heap in O(n) time. Then perform
√
n delete-mins in O(

√
n log n) = O(n)

time.

Problem 5* (Priority Queue with Attrition). Let S be a dynamic set of integers. At the
beginning S is empty. We want to support the following operations:

• Insert-with-Attrition(e): First removes all integers in S that are greater than e, and then
adds e to S.

• Delete-Min: Removes and returns the smallest integer of S.

For example, suppose we perform the following sequence of operations:

1. Insert-with-Attrition(83)
2. Insert-with-Attrition(5)
3. Insert-with-Attrition(10)
4. Insert-with-Attrition(15)
5. Insert-with-Attrition(12)

6. Delete-Min
7. Delete-Min

After Operation 3, S = {5, 10} (note that 83 has been deleted by Operation 2). After Operation
5, S = {5, 10, 12}. After Operation 6, S = {10, 12}.

Describe a data structure with the following guarantees:

• At all times, the space consumption is O(|S|).

• Any sequence of n operations (each being an insert-with-attrition or delete-min) is
processed with O(n) time.

Solution. We simply maintain all the elements of S in a queue Q, where they are arranged in
the same order by which they enter S. Given an Insert-with-Attrition(e) operation, we keep
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walking back from the tail of Q until either seeing the first element smaller than e or having
exhausted the entire Q. Delete all the elements that (i) are already seen, and (ii) are larger than
e. It is important to observe that at this moment all the remaining elements in Q are sorted in
ascending order.

To perform a delete-min, simply remove the first element of Q.

The cost of delete-min is clearly O(1). The cost of Insert-with-Attrition equals O(1 + x)
where x is the number of elements removed. The total cost of all the Insert-with-Attrition

operations is O(n) because every element can contribute to the x-term only once.

Problem 6 (Textbook Exercise 6.5-9). Suppose that we have k arrays A1, A2, ..., Ak of in-
tegers, such that each array has been sorted in ascending order. Let n be the total number of
integers in those arrays. Describe an algorithm to produce an array that sorts all the n integers in
ascending order (you may assume that no integer exists in two arrays). Your algorithm must finish
in O(n log k) time.

For example, suppose that k = 3, and that the three arrays are (2, 23, 32, 35, 37), (5, 10), and
(33, 58, 82). Then you should produce an array containing (2, 5, 10, 23, 32, 33, 35, 37, 58, 82).

Solution. Insert the smallest element of each array into a binary heap H. This takes O(k log k)
time. Then, repeat the following until H is empty:

• Perform a delete-min. Let e be the element fetched.

• Append e to the output array.

• If e comes from Ai (for some i), obtain the next element from Ai, and insert it into H. If Ai

has been exhausted, then do nothing.

Each delete-min and insertion require O(log k) time because H has at most k elements. There are
n delete-min and n insertions. So the total cost is O(n log k).
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