
COMP3506/7505: Regular Exercise Set 5

Prepared by Yufei Tao

Problems marked with an asterisk may be difficult.

Problem 1 (Counting Sort on a Multi-Set). Let A be an array of n integers, each of which
comes from the domain [1, U ]. Note that some of the integers may be identical. Design an algorithm
to arrange these integers in non-descending order. For example, if A stores the sequence of integers
(35, 12, 28, 12, 35, 7, 63, 35), you should output an array (7, 12, 12, 28, 35, 35, 35, 63). Your algorithm
should terminate in O(n + U) time (note: U may be smaller than n). Hint: combine arrays and
linked lists.

Solution. Create an array of length U , where each cell stores a pair of pointers referencing the
head and tail nodes of a linked list. In other words, there are U linked lists in total. At the
beginning, all these linked lists are empty. This step takes O(U) time.

For each i ∈ [1, n], obtain the integer x = A[i]. Insert x into the linked list that U [i] corresponds
to (by appending x to the end of the linked list). This takes O(1) time per i, and hence, O(n) time
for all i ∈ [1, n].

Scan the linked lists from left to right, collect the integers stored there, and append them to
the output array. The ordering of the elements in the same linked list does not matter. This step
can be completed in O(U) time.

Problem 2*. Let A be an array of n integers, each of which comes from the domain [1, U ]. Note
that some of the integers may be identical. Design an algorithm to compute, for each distinct integer
x in A, how many integers in A are at most x. For example, if A stores the sequence of integers
(35, 12, 28, 12, 35, 7, 63, 35), you should output an array ((7, 1), (12, 3), (28, 4), (35, 7), (63, 8)). Your
algorithm should terminate in O(n + U) time (note: U may be smaller than n).

Solution. Create an array of U integers. At the beginning, all the integers there are set to 0. For
each i ∈ [1, n], obtain the integer x = A[i]. Increase U [x] by 1.

At this moment, U [x] stores the number of occurrences of x in A. Next, we will modify U [x]
to the number of integers in A that are smaller than or equal to x. For this purpose, initialize a
counter c to 0. Then, for every x ∈ [1, n] (in ascending order of x), do the following: first increase
c by U [x], and then set U [x] to c. This takes O(U) time.

The final array can be easily produced from the current contents of U in O(U) time.

Problem 3. Same as the previous problem, except that your algorithm should terminate in
O(n log n) time.

Solution. Simply sort the multi-set of integers in A in O(n log n) time. Then, generate the desired
array from the sorted list in O(n) time.

Problem 4. Describe an algorithm to achieve the following purposes. Let S be a dynamic set of
integers, which is empty at the beginning. Then, you will receive a number of insertions, each of
which adds a new integer into S. Eventually, you will receive a signal “end”, which indicates that

1



there will be no more insertions. You will need to report the integers in the reverse chronological
order, namely, if an integer is received earlier, it should be reported later. If there are n insertions
in total, then your algorithm should have total running time O(n). Note that you do not know the
value of n until you receive the signal.

For example, if the integers inserted are in this order: 35, 12, 28, 12, 33), then you should
produce an array (33, 12, 28, 12, 35).

Solution. Push all the incoming integers into a stack. After receiving the end signal, produce the
output array by popping all the elements from the stack.

Problem 5. Write an algorithm to calculate x + y, where x and y are positive integers each of
which has n decimal integers. Specifically, the formula is given in an array where the decimal digits
of x are followed by +, and then followed by the decimal digits of y. For example, the expression
123 + 456 is given in an array of length 7: (1, 2, 3,+, 4, 5, 6). You should produce the answer in an
array that stores the decimal digits of x + y. For instance, in the previous example, your output
should be (5, 7, 9). Your algorithm must finish in O(n) time.

Solution. Scan A from left to right. Keep pushing the digits into a stack A, until encountering the
symbol +. Then, push the remaining digits into another stack B. Next, we will pop the digits from
the two stacks synchronously, and in the mean time perform the addition. Specifically, initialize an
empty stack R, and set c to 0 (which is the carry). Repeat the following until both A and B are
empty:

• Pop a number a from A, and a number b from B.

• Calculate d = a + b + c.

• If d > 10, then set c to 1, and d to d− 10; otherwise, set c to 0.

• Push d into R.

Finally, if c = 1, then push c into stack R.

To produce the output, simply keep popping from R, and append the obtained number into the
output array.

Problem 6*. Let A be an array of n integers, some of which may be identical. Design a data
structure that consumes O(n) space, and supports the following replacement operation efficiently:

• Replacement(u, v), where u and v are both values in A, The operation replaces all the oc-
currences of u in A with v.

Your structure must support each such operation in O(log n + k) time, where k is the number
of occurrences of u. Also, you need to design an algorithm to prepare the structure from A in
O(n log n) time.

For example, suppose that A = (35, 12, 28, 12, 35, 7, 63, 35). You can now run your algorithm to
create the structure—your algorithm must finish in O(n log n) time. After this is done, you will be
given replacement operations to process. For example, given replacement(12, 28), you must update
A to (35, 28, 28, 28, 35, 7, 63, 35); for this operation, k = 2. Now, given replacement(28, 35), you
must further update A to (35, 35, 35, 35, 35, 7, 63, 35); for this operation, k = 3.

2



Solution. First, collect all the distinct integers into B, and sort them in ascending order. This
can be done in O(n log n) time. For every integer x ∈ B, create a linked list L(x) storing all the
positions of x in A. For example, L(12) stores the set {2, 4}. Associate the head and tail pointers
of L(x) with the entry of x in B. This is our data structure. It can be constructed in O(n log n)
time.

To perform a Replacement(u, v), first find the entry of u and v in B with binary search. This
takes O(log n) time. Then, scan all the elements in L(u); for every x stored therein, change A[x] to
v. This takes O(u) time. Finally, append the entire L(u) to L(v). This can be done in O(1) time
by setting the next pointer of the tail of L(v) to the address of the head of L(u).

In our example, before the first replacement, L(12) stores {2, 4} and L(28) stores {3}. After
the first replacement, L(28) stores {3, 2, 4}.

3


