
COMP3506/7505: Regular Exercise Set 12

Prepared by Yufei Tao

Problem 1 (Correctness of Dijkstra) Prove that Dijkstra’s algorithm correctly computes all
the shortest paths from the source vertex.

Solution. Let s be the source vertex. Recall that the algorithm works by repetitively removing
the vertex u from S that has the smallest dist(u). We will prove that, when u is removed, dist(u)
equals precisely the shortest path distance—denoted as spdist(u)—from s to u.

We will prove the claim by induction on the sequence of vertices removed. This is obviously
true for the first vertex removed, which is s itself with dist(s) = 0.

Now consider that we are removing vertex u from S, and the claim is true with respect to all
the vertices already removed. Consider any shortest path π from s to u. Let v be the predecessor
of u on this path. We will prove that v has already been removed. This will complete the proof
because when v is removed, we have:

• spdist(v) = dist(v)

• Relaxing the edge (v, u) makes dist(u) = dist(v) + w(u, v) = spdist(v).

We will prove that all the vertices on π have been removed (and hence, v as well) at the moment
when u is removed. Suppose that this is not true. Let v′ be the first vertex (in the direction from s
to u) on π that still remains in S. Let p be the predecessor of v′ on π. By the inductive assumption,
we know that dist(p) = spdist(p) when p was removed. Hence, after relaxing the edge (p, v′), we
had dist(v′) = dist(p) + w(p, v′) = spdist(v′) < dist(u). This means that v′ should be the next
vertex to remove, contradicting that the algorithm has chosen u.

Problem 2. Let S be a set of integer pairs of the form (id , v). We will refer to the first field as
the id of the pair, and the second as the key of the pair. Design a data structure that supports the
following operations:

• Insert: add a new pair (id , v) to S (you can assume that S does not already have a pair with
the same id).

• Delete: given an integer t, delete the pair (id , v) from S where t = id , if such a pair exists.

• DeleteMin: remove from S the pair with the smallest key, and return it. .

Your structure must consumeO(n) space, and support all operations inO(log n) time where n = |S|.

Solution. Maintain S in two binary search trees T1 and T2, where the pairs are indexed on ids in
T1, and on keys in T2. We support the three operations as follows:

• Insert: simply insert the new pair (id , v) into both T1 and T2.

• Delete: first find the pair with id t in T1, from which we know the key v of the pair. Now,
delete the pair (t, v) from both T1 and T2.

• DeleteMin: find the pair with the smallest key v from T2 (which can be found by continuously
descending into left child nodes). Now we have its id t as well. Remove (t, v) from T1 and T2.
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Problem 3. Describe how to implement the Dijkstra’s algorithm on a graph G = (V,E) in
O((|V |+ |E|) · log |V |) time.

Solution. Recall that the algorithm maintains (i) a set S of vertices at all times, and (ii) an integer
value dist(v) for each vertex v ∈ S. Define P to be the set of (v, dist(v)) pairs (one for each v ∈ S).
We need the following operations on P :

• Insert: add a pair (v, dist(v)) to P .

• DecreaseKey: given a vertex v ∈ S and an integer x < dist(v), update the pair (v, dist(v)) to
(v, x) (and thereby, setting dist(v) = x in P ).

• DeleteMin: Remove from P the pair (v, dist(v)) with the smalelst dist(v).

We can store P in a data structure of Problem 2 which supports all operations in O(log |V |) time
(note: DecreaseKey can be implemented as a Delete followed by an Insert).

In addition to the above structure, we store all the dist(v) values in an array A of length |V |,
so that using the id of a vertex v, we can find its dist(v) in constant time.

Now we can implement the algorithm as follows. Initially, insert only (s, 0) into P , where s is
the source vertex. Also, in A, set all the values to ∞, except the cell of s which equals 0.

Then, we repeat the following until P is empty:

• Perform a DeleteMin to obtain a pair (v, dist(v)).

• For every edge (v, u), compare dist(u) to dist(v) + w(u, v). If the latter is smaller, perform
a DecreaseKey on vertex u to set dist(u) = dist(v) + w(u, v), and update the cell of u in A
with this value as well.

Problem 4. Prove: in a weighted undirected graph G = (V,E) where all the edges have distinct
weights, the minimum spanning tree (MST) is unique.

Solution. We will prove that the tree T returned by the Prim’s algorithm is the only MST. Set
n = |V |. Let e1, e2, ..., en−1 be the sequence of edges that the algorithm adds to T . Suppose, on
the contrary, that there is another MST T ′. Let k be the smallest i such that ei is not in T ′.

• Case 1: k = 1. This means that e1, which is the edge with the smallest weight, is not in T ′.
Add e1 to T ′ to create a cycle, and remove from the cycle the edge with the largest weight.
This create another spanning tree whose cost is strictly smaller than T ′ (remember: all the
edges are distinct), contradicting the fact that T ′ is an MST.

• Case 2: k > 1. Recall that edges e1, e2, ..., ek−1 form a tree. Let S be the set of vertices in
this tree. Add ek = {u, v} into T ′ to create a cycle. Suppose u ∈ S; it follows that v /∈ S. Let
us walk on the cycle from v, by going into S, traveling within S, and stopping as soon as we
exist S. Let {u′, v} be the last edge crossed (namely, one of u′, v′ is in S, while the other one
is not). By the way Prim’s algorithm runs and the fact that all edges have distinct weights,
we know that {u, v} has a smaller weight than {u′, v′}. Thus, removing {u′, v′} from T ′ gives
spanning tree with strictly smaller cost, which creates a contradiction.

Problem 5. Describe how to implement the Prim’s algorithm on a graph G = (V,E) in O((|V |+
|E|) · log |V |) time.
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Solution. Remember that the algorithm incrementally grows a tree T which at the end becomes
the final minimum spanning tree. Let S be the set of vertices that are currently in T . At all times,
the algorithm maintains, for every vertex v ∈ V \S, its lightest extension edge best-ext(v), and the
weight of this edge.

To implement this, we maintain a set P of triples, one for every vertex u ∈ V \ S. Specifically,
the triple of u has the form (u, v, t), indicating that best-ext(u) is the edge {u, v} (i.e., v ∈ S),
whose weight is t. We need the following operations on P :

• Insert: add a triple (u, v, t) to P .

• DecreaseKey: given a vertex v′ ∈ S and an extension edge {u, v′} (i.e., u /∈ S), this operation
does the following. First, fetch the triple (u, v, t). Then, compare t to the weight t′ of {u, v′}.
If t′ < t, update the triple (u, v, t) to (u, v′, t′); otherwise, do nothing.

• DeleteMin: Remove from P the triple (u, v, t) with the smallest t.

We can store P in a data structure of Problem 2 which supports all operations in O(log |V |)
time (note: DecreaseKey can be implemented as a Delete followed by an Insert). Besides the above
structure, we also store an array A of length |V | to so that we can query in constant time, for any
vertex v ∈ V , whether v is in S currently.

Now we can implement the algorithm as follows. Let {v1, v2} be an edge with the smallest
weight in G. The set S contains only v1 and v2 at this point. For every vertex u ∈ V \ S where
S = {v1, v2}, we check whether u has extension edges to v1 and v2. If neither edge exists, insert
triple (u,nil ,∞) to P . Otherwise, suppose without loss of generality that {u, v1} is the lighter
extension edge of u with weight t; insert a triple (u, v1, t) into P .

Repeat the following until P is empty:

• Perform a DeleteMin to obtain a triple (u, v, t).

• Recall that u should be added to S, which may need to change the extension edges of some
other vertices. To implement this, for every edge (u, u′) of u where u′ /∈ S, perform De-
creaseKey with u′ and {u, u′}.
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