COMP3506/7505: Regular Exercise Set 11

Prepared by Yufei Tao

Problem 1 (Correctness of the White Path Theorem) Consider performing DFS on a
directed graph G = (V, E). Then, both of the following statements are true:

e Suppose that when a vertex u is discovered, there is still a white path from u to a vertex v
(namely, we can hop from u to v while stepping on only white vertices). Then, v must be a
descendant of u in the DFS forest.

e Conversely, if v is a descendant of u in the DFS forest, then there must be a white path from
u to v at the moment when u is discovered.

Problem 2 (DFS on Undirected Graphs). Let G = (V, E) be an undirected graph. Consider
the execution of DFS on G. The algorithm runs in exactly the same way as DFS on a directed
graph. The only difference is that, a vertex u is popped out of the stack, only if none of its neighbors
(instead of out-neighbors) is still white. Give a possible DFS tree produced if we (i) start DFS on
a in the following graph, and (ii) follow the convention that we explore the neighbors of a vertex
in alphabetic order.

Problem 3 (No Cross Edges in Undirected DFS). Let G = (V, E) be an undirected graph.
Consider the DFS forest produced by running DFS on G (assuming arbitrary starting and re-
starting vertices). Let {u,v} be an edge in G (note that we use the notation {u,v}, instead of
(u,v), to emphasize that the edge has no directions). Prove: either u is an ancestor of v, or v is an
ancestor of u.

Remark: Because of this lemma, we can classify each edge {u,v} in G as follows:
e Tree edge: if u is the parent of v or v is the parent of u.

e Back edge: otherwise.

Problem 4 (Undirected Cycle Detection). Let G = (V, E) be an undirected graph. A cycle is
a sequence of edges {v1,va}, {va, v3}, ..., {vs—1,v¢} where vy = v1. Adapt DFS to design an algorithm
to detect whether G has a cycle in O(|V| + |E|) time.

Problem 5** (Articulation Vertex). Let G = (V, E) be an undirected graph that is connected
(i.e., there is a path between any two distinct vertices). A vertex u € V is called an articulation
vertex if the following is true: G becomes disconnected after removing w and all the edges of w.
For example, in the figure below, vertex ¢ is an articulation, and so is d. No other vertices are
articulation vertices.

S
O

Consider any DFS tree on G. Prove:
e If a vertex u is a leaf in the DFS tree, it cannot be an articulation vertex.

e Let u a vertex that is neither a leaf in the DFS tree nor the root. It is an articulation vertex
if and only if the following is true:

— There is at least one child v of u, such that no back edge connects a descendant of v to
a proper ancestor of u.

e Let u be the root of a DFS tree. It is an articulation vertex if and only if it has at least two
child nodes in the DFS tree.

Problem 6* (Finding an Articulation Vertex). Let G = (V| E) be an undirected graph that
is connected. Design an algorithm to determine whether G has any articulation vertex. Your
algorithm must finish in O(|V| + |E|) time.

Problem 7 (The L-Ordering Lemma of the SCC Algorithm). Prove the lemma on Slide 28
of the lecture notes about strongly connected components (SCCs). Let Si,S2 be SCCs such that
there is a path from S7 to S2 in GSCC. In the ordering of L, the earliest vertex in So must come
before the earliest vertex in Sj.

Problem 8. Prove that for any directed graph G = (V| E), the SCC decomposition is unique.
Namely, there is only one way to decompose V' into disjoint subsets, each of which is an SCC; and
furthermore, such a decomposition always exists.

