
COMP3506/7505: Regular Exercise Set 11

Prepared by Yufei Tao

Problem 1 (Correctness of the White Path Theorem) Consider performing DFS on a
directed graph G = (V,E). Then, both of the following statements are true:

• Suppose that when a vertex u is discovered, there is still a white path from u to a vertex v
(namely, we can hop from u to v while stepping on only white vertices). Then, v must be a
descendant of u in the DFS forest.

• Conversely, if v is a descendant of u in the DFS forest, then there must be a white path from
u to v at the moment when u is discovered.

Problem 2 (DFS on Undirected Graphs). Let G = (V,E) be an undirected graph. Consider
the execution of DFS on G. The algorithm runs in exactly the same way as DFS on a directed
graph. The only difference is that, a vertex u is popped out of the stack, only if none of its neighbors
(instead of out-neighbors) is still white. Give a possible DFS tree produced if we (i) start DFS on
a in the following graph, and (ii) follow the convention that we explore the neighbors of a vertex
in alphabetic order.

a

b

c

d

e

f

g

Problem 3 (No Cross Edges in Undirected DFS). Let G = (V,E) be an undirected graph.
Consider the DFS forest produced by running DFS on G (assuming arbitrary starting and re-
starting vertices). Let {u, v} be an edge in G (note that we use the notation {u, v}, instead of
(u, v), to emphasize that the edge has no directions). Prove: either u is an ancestor of v, or v is an
ancestor of u.

Remark: Because of this lemma, we can classify each edge {u, v} in G as follows:

• Tree edge: if u is the parent of v or v is the parent of u.

• Back edge: otherwise.

Problem 4 (Undirected Cycle Detection). Let G = (V,E) be an undirected graph. A cycle is
a sequence of edges {v1, v2}, {v2, v3}, ..., {vt−1, vt} where vt = v1. Adapt DFS to design an algorithm
to detect whether G has a cycle in O(|V |+ |E|) time.

Problem 5** (Articulation Vertex). Let G = (V,E) be an undirected graph that is connected
(i.e., there is a path between any two distinct vertices). A vertex u ∈ V is called an articulation
vertex if the following is true: G becomes disconnected after removing u and all the edges of u.
For example, in the figure below, vertex g is an articulation, and so is d. No other vertices are
articulation vertices.

1

a

b

c

d

e

f

g

Consider any DFS tree on G. Prove:

• If a vertex u is a leaf in the DFS tree, it cannot be an articulation vertex.

• Let u a vertex that is neither a leaf in the DFS tree nor the root. It is an articulation vertex
if and only if the following is true:

– There is at least one child v of u, such that no back edge connects a descendant of v to
a proper ancestor of u.

• Let u be the root of a DFS tree. It is an articulation vertex if and only if it has at least two
child nodes in the DFS tree.

Problem 6* (Finding an Articulation Vertex). Let G = (V,E) be an undirected graph that
is connected. Design an algorithm to determine whether G has any articulation vertex. Your
algorithm must finish in O(|V |+ |E|) time.

Problem 7 (The L-Ordering Lemma of the SCC Algorithm). Prove the lemma on Slide 28
of the lecture notes about strongly connected components (SCCs). Let S1, S2 be SCCs such that
there is a path from S1 to S2 in GSCC . In the ordering of L, the earliest vertex in S2 must come
before the earliest vertex in S1.

Problem 8. Prove that for any directed graph G = (V,E), the SCC decomposition is unique.
Namely, there is only one way to decompose V into disjoint subsets, each of which is an SCC; and
furthermore, such a decomposition always exists.

2

