Universality of Hashing [Notes for the Training Camp]

Yufei Tao

ITEE University of Queensland In this lecture, we will prove the universality of the hash function we designed in the main class. Our proof serves as a nice illustration of how computer science can benefit from number theory.

Recall:

Hash Function

Let U and m be positive integers.

A hash function is a function h that maps [U] to [m] (recall that [x] denotes the set of integers $\{1, 2, ..., x\}$), namely, for any integer $k \in [U]$, h(k) returns a value in [m].

Recall:

Universality

Let \mathcal{H} be a family of hash functions. \mathcal{H} is universal if the following holds:

Let k_1, k_2 be two distinct integers in [U]. By picking a function $h \in \mathcal{H}$ uniformly at random, we guarantee that

$$Pr[h(k_1) = h(k_2)] \leq 1/m.$$

Recall:

A Universal Family

Pick a prime number p such that $p \ge \max\{U, m\}$. Choose an integer α uniformly at random from $\{1, 2, ..., p-1\}$, and an integer β uniformly at random from $\{0, 1, ..., p-1\}$. Design a hash function as:

$$h(k) = 1 + ((\alpha \cdot k + \beta) \mod p) \mod m$$

Denote by \mathbb{Z}_p the set of integers $\{0,1,...,p-1\}$. \mathbb{Z}_p forms a commutative ring under + and \cdot modulo p. This means:

- \mathbb{Z}_p is closed under + and \cdot modulo p.
- + modulo p satisfies commutativity and associativity.

-
$$a + b = b + a \pmod{p}$$
 and $a + b + c = a + (b + c) \pmod{p}$

- + modulo p has a zero element, that is, $0 + a = a \pmod{p}$.
- Every element a has an additive inverse -a, that is, a + (-a) = 0 (mod p).
- modulo p satisfies commutativity and associativity.

-
$$a \cdot b = b \cdot a \pmod{p}$$
 and $a \cdot b \cdot c = a \cdot (b \cdot c) \pmod{p}$

- modulo p has a one element, that is, $1 \cdot a = a \pmod{a}$.
- \bullet + and \cdot modulo p satisfy distributivity.

$$-a \cdot (b+c) = a \cdot b + a \cdot c \pmod{p}$$

$$-(b+c)\cdot a = b\cdot a + c\cdot a \pmod{p}$$

The ring \mathbb{Z}_p has several crucial properties. Let us start with:

Lemma: Let a be a non-zero element in \mathbb{Z}_p . Then, $a \cdot j \neq a \cdot k \pmod{p}$ for any $j, k \in \mathbb{Z}_p$ with $j \neq k$.

Proof: Suppose without loss of generality j > k. Assume $a \cdot j = a \cdot k \pmod{p}$, then $a \cdot (j - k) = 0 \pmod{p}$. This means that $a \cdot (j - k)$ must be a multiple of p. Since p is prime, either a or j - k must be a multiple of p. This is impossible because a and j - k are non-zero elements in \mathbb{Z}_p .

The lemma implies that $a \cdot 0$, $a \cdot 1$, ..., $a \cdot (p-1)$ must take unique values in $\{0, 1, ..., p-1\}$.

The previous lemma immediately implies:

Corollary: Every non-zero element a has a unique multiplicative inverse a^{-1} , namely, $a \cdot a^{-1} = 1 \pmod{p}$.

In other words, \mathbb{Z}_p is a division ring.

The next property then follows:

Lemma: Every equation $a \cdot x + b = c \pmod{p}$ where a, b, c are in \mathbb{Z}_p and $a \neq 0$ has a unique solution in \mathbb{Z}_p .

Proof:

$$a \cdot x = c - b \pmod{p}$$

 $\Rightarrow x = a^{-1} \cdot (c - b) \pmod{p}$

Next, we will prove that the hash family \mathcal{H} defined in Slide 5 is universal. As before, let k_1 and k_2 be distinct integers in [U].

Fact 1: Let

$$g(k_1) = (\alpha \cdot k_1 + \beta) \mod p$$

 $g(k_2) = (\alpha \cdot k_2 + \beta) \mod p$

Then, $g(k_1) \neq g(k_2)$.

Proof: Otherwise, it must hold that

$$\alpha \cdot k_1 + \beta = \alpha \cdot k_2 + \beta \pmod{p}$$

$$\Rightarrow \alpha \cdot (k_1 - k_2) = 0 \pmod{p}$$

which is not possible.

How many different choices are there for the pair $(g(k_1), g(k_2))$? The answer is at most p(p-1) according to Fact 1 – there are p^2 possible pairs in $\mathbb{Z}_p \times \mathbb{Z}_p$ but we need to exclude the p pairs where the two values are the same.

How many different hash functions are there in \mathcal{H} ? The answer is obviously p(p-1) because there are p-1 selections for α , and p selections for β .

Next, we will prove a one-to-one mapping between the possible choices of $(g(k_1), g(k_2))$ and the hash functions in \mathcal{H} .

Fact 2: Fix any two $x, y \in \mathbb{Z}_p$ such that $x \neq y$. There is a unique hash function $h \in \mathcal{H}$ such that $h(k_1) = x$ and $h(k_2) = y$.

Proof: Suppose that h is determined by α, β selected as explained in Slide 5. Thus:

$$\alpha \cdot k_1 + \beta = x \pmod{p}$$

 $\alpha \cdot k_2 + \beta = y \pmod{p}$

Hence:

$$\alpha \cdot (k_1 - k_2) = x - y \pmod{p}$$

$$\Rightarrow \alpha = (k_1 - k_2)^{-1} \cdot (x - y) \pmod{p}$$

$$\Rightarrow \beta = x - (k_1 - k_2)^{-1} \cdot (x - y) \cdot k_1 \pmod{p}$$

Let P be the set of pairs (x, y) such that $x, y \in \mathbb{Z}_p$ and $x \neq y$.

We know that by choosing $h \in \mathcal{H}$ randomly, we are essentially picking a pair (x, y) for $(g(k_1), g(k_2))$ uniformly at random.

Notice that $h(k_1) = h(k_2)$ if and only if $g(k_1) = g(k_2)$ (mod m). So now the question boils down to: how many pairs (x, y) in P satisfy x = y (mod m)?

How many pairs (x, y) in P satisfy $x = y \pmod{m}$?

- For x = 0, y can take m, 2m, 3m, ... definitely no more that $\lceil p/m \rceil 1 \le (p-1)/m$ choices
- For x=1, y can take m+1, 2m+1, 3m+1, ... definitely no more that $\lceil p/m \rceil 1 \leq (p-1)/m$ choices

...

Hence, the number of such pairs is no more than p(p-1)/m = |P|/m.

Now we conclude that the probability of $h(k_1) = h(k_2)$ is at most 1/m.

