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In this lecture, we will prove the universality of the hash function we

designed in the main class. Our proof serves as a nice illustration of how

computer science can benefit from number theory.
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Recall:

Hash Function

Let U and m be positive integers.

A hash function is a function h that maps [U] to [m] (recall that [x ]

denotes the set of integers {1, 2, ..., x}), namely, for any integer k ∈ [U],

h(k) returns a value in [m].
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Recall:

Universality

Let H be a family of hash functions. H is universal if the following holds:

Let k1, k2 be two distinct integers in [U]. By picking a function
h ∈ H uniformly at random, we guarantee that

Pr [h(k1) = h(k2)] ≤ 1/m.
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Recall:

A Universal Family

Pick a prime number p such that p ≥ max{U,m}. Choose an integer α
uniformly at random from {1, 2, ..., p − 1}, and an integer β uniformly at
random from {0, 1, ..., p − 1}. Design a hash function as:

h(k) = 1 + ((α · k + β) mod p) mod m
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The Prime Ring

Denote by Zp the set of integers {0, 1, ..., p − 1}. Zp forms a
commutative ring under + and · modulo p. This means:

Zp is closed under + and · modulo p.

+ modulo p satisfies commutativity and associativity.

- a + b = b + a (mod p) and a + b + c = a + (b + c) (mod p)

+ modulo p has a zero element, that is, 0 + a = a (mod p).

Every element a has an additive inverse −a, that is, a + (−a) = 0
(mod p).

· modulo p satisfies commutativity and associativity.

- a · b = b · a (mod p) and a · b · c = a · (b · c) (mod p)

· modulo p has a one element, that is, 1 · a = a (mod a).

+ and · modulo p satisfy distributivity.

- a · (b + c) = a · b + a · c (mod p)
- (b + c) · a = b · a + c · a (mod p)
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The Prime Ring

The ring Zp has several crucial properties. Let us start with:

Lemma: Let a be a non-zero element in Zp. Then, a · j 6= a · k
(mod p) for any j , k ∈ Zp with j 6= k .

Proof: Suppose without loss of generality j > k . Assume a · j = a · k
(mod p), then a · (j − k) = 0 (mod p). This means that a · (j − k) must
be a multiple of p. Since p is prime, either a or j − k must be a multiple
of p. This is impossible because a and j − k are non-zero elements in
Zp.

The lemma implies that a · 0, a · 1, ..., a · (p − 1) must take unique values

in {0, 1, ..., p − 1}.
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The Prime Ring

The previous lemma immediately implies:

Corollary: Every non-zero element a has a unique multiplicative
inverse a−1, namely, a · a−1 = 1 (mod p).

In other words, Zp is a division ring.
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The Prime Ring

The next property then follows:

Lemma: Every equation a · x + b = c (mod p) where a, b, c are
in Zp and a 6= 0 has a unique solution in Zp.

Proof:

a · x = c − b (mod p)

⇒ x = a−1 · (c − b) (mod p)
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Proof of Universality

Next, we will prove that the hash family H defined in Slide 5 is universal.
As before, let k1 and k2 be distinct integers in [U].

Fact 1: Let

g(k1) = (α · k1 + β) mod p

g(k2) = (α · k2 + β) mod p

Then, g(k1) 6= g(k2).

Proof: Otherwise, it must hold that

α · k1 + β = α · k2 + β (mod p)

⇒ α · (k1 − k2) = 0 (mod p)

which is not possible. .
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Proof of Universality

How many different choices are there for the pair (g(k1), g(k2))? The
answer is at most p(p − 1) according to Fact 1 – there are p2 possible
pairs in Zp × Zp but we need to exclude the p pairs where the two values
are the same.

How many different hash functions are there in H? The answer is
obviously p(p − 1) because there are p − 1 selections for α, and p
selections for β.

Next, we will prove a one-to-one mapping between the possible choices of

(g(k1), g(k2)) and the hash functions in H.
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Proof of Universality

Fact 2: Fix any two x , y ∈ Zp such that x 6= y . There is a unique
hash function h ∈ H such that h(k1) = x and h(k2) = y .

Proof: Suppose that h is determined by α, β selected as explained in
Slide 5. Thus:

α · k1 + β = x (mod p)

α · k2 + β = y (mod p)

Hence:

α · (k1 − k2) = x − y (mod p)

⇒ α = (k1 − k2)−1 · (x − y) (mod p)

⇒ β = x − (k1 − k2)−1 · (x − y) · k1 (mod p)
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Proof of Universality

Let P be the set of pairs (x , y) such that x , y ∈ Zp and x 6= y .

We know that by choosing h ∈ H randomly, we are essentially picking a
pair (x , y) for (g(k1), g(k2)) uniformly at random.

Notice that h(k1) = h(k2) if and only if g(k1) = g(k2) (mod m). So now

the question boils down to: how many pairs (x , y) in P satisfy x = y

(mod m)?
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Proof of Universality

How many pairs (x , y) in P satisfy x = y (mod m)?

For x = 0, y can take m, 2m, 3m, ... – definitely no more that
dp/me − 1 ≤ (p − 1)/m choices

For x = 1, y can take m + 1, 2m + 1, 3m + 1, ... – definitely no more
that dp/me − 1 ≤ (p − 1)/m choices

...

Hence, the number of such pairs is no more than p(p − 1)/m = |P|/m.

Now we conclude that the probability of h(k1) = h(k2) is at most 1/m.
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