Tries, Patricia Tries, and Suffix Trees [Notes for the Training Camp]

Yufei Tao

ITEE University of Queensland

In this lecture, we will look at data structures on a new type of elements: text strings. Our ultimate goal is solve a difficult problem called substring matching with a clever structure called the suffix tree.

We will get to the suffix tree in an incremental manner, first starting with the trie, and then progressing to its space-economical variant: the Patricia trie. Both of these more fundamental structures tackle a special version of the substring matching problem: exact matching.

Exact Matching

Define a string to be a sequence of characters, all of which are chosen from an alphabet Σ . Let S be a set of strings, each of which has a unique integer id. Given a string q, an exact matching query reports:

- the id of q if it exists in S
- nothing otherwise.

Example

Suppose that $S = \{ \text{aaabb, aab, aabaa, aabab, aba, abbba, abbbb} \}$. Let the ids of these strings be (from left to right) 1, 2, ..., 8, respectively. Given q = aabaa, a query returns id 3, whereas given q = abab, it returns nothing.

Prefixes

Let s be a string of length t = |s| (i.e., |s| represents the number of characters in s). We can write its characters (from left to right) as s[1]s[2],...s[t], respectively.

For any $i \in [1, t]$, the string s[1]s[2]...s[i] is called a prefix of s. Specially, an empty string \emptyset is also a prefix of s.

Example

s= aabaa has 6 prefixes: \emptyset , a, aa, aab, aaba, and aabaa.

Prefix-Free

A set S of strings is called prefix-free if no string in S is a prefix of any other string in S. Any set of strings can be made prefix-free by appending a special "termination symbol" to each string in S.

Example: Let $S = \{aaabb, aab, aabaa, aabab, aba, abbb, abbba, abbbb<math>\}$. We can convert S to $\{aaabb\bot, aab\bot, aabaa\bot, aabab\bot, abbb\bot, abbba\bot, abbbb\bot\}$, which is prefix-free.

From now on, we will consider that S is prefix-free, and that every string in S ends with \bot .

Tries

The trie on S is a tree T defined as follows:

- Each node u of T corresponds to a distinct string P(u) which is a prefix of some string in S.
- Let u be a node, and v a child node of u. Then:
 - P(u) is a prefix of P(v).
 - |P(v)| = |P(u)| + 1.
- Each node u is labeled with a character c, which is the last character of P(u).
- Each leaf z has its P(z) equal to a string in S.

Example

Let $S = \{aaabb\bot$, $aab\bot$, $aabaa\bot$, $aabab\bot$, $abab\bot$, $abbb\bot$, $abbbb\bot$. The trie is:

Intuitively, a trie is a tree where strings share prefixes as much as possible.

Query

A trie answers an exact matching query q in O(1+|q|) time (think: how to use only O(1) time to navigate to a child?).

How do we answer an exact matching query with q = aabaa? How about q = abab?

The number of nodes is O(n), where n is the total length of all the strings in S, namely, $n = \sum_{s \in S} |s|$.

Let m be the number of strings in S. Note that n can be far larger than m.

Next, we will improve the space consumption to O(m), without affecting the query time, provided that every string in S has been stored as an array. The new structure is called the Patricia trie.

Storing the Strings as Arrays

Henceforth, we will denote the strings in S as $s_1, s_2, ..., s_m$, respectively. We will consider that each s_i is stored in an array of size $|s_i|$, where $s_i[j]$ gives the j-th $(1 \le j \le |s_i|)$ character of s_i .

LCS

The longest common prefix (LCS) of a set S of strings is a string σ such that:

- σ is a prefix of every string in S.
- There is no string σ' such that σ' is a prefix of every string in S, and $|\sigma'| > |\sigma|$.

For example, the LCS of $\{aaabb\bot$, $aab\bot$, $aabaa\bot$ $\}$ is aa, and that of $\{aaabb\bot$, $baa\bot$ $\}$ is \emptyset .

Extension Set

Given two strings s_1, s_2 , we use $s_1 \cdot s_2$ to denote their concatenation.

Let S be a set of strings, and σ the LCS of S. The extension set of S is the set of characters c such that $\sigma \cdot c$ is a prefix of at least one string in S.

Example

For example, the extension set of $\{aaabb\bot$, $aab\bot$, $aaba\bot$ is $\{a,b\}$. The extension set of $\{aaabb\bot$, $baa\bot$ is also $\{a,b\}$.

Patricia Trie

The Patricia trie T on S is a tree where each node u carries a positional index PI(u), and a representative pointer RP(u). T can be recursively defined as follows:

- If |S| = 1, then T has only one node u with PI(u) = 1, and RP(u) referencing the array of the (only) string in S.
- Otherwise:
 - Let σ be the LCS of S. The root of T is a node u with $PI(u) = |\sigma|$, and RP(u) referencing the array of an arbitrary string in S.
 - Let E be the extension set of S. Then, u has |E| subtrees, one for each character c in E. Specifically, the subtree for c is a Patricia trie on the set of strings in S with $\sigma \cdot c$ as a prefix.

Example

Let $S = \{aaabb\bot, aabaa\bot, aabab\bot, abbb\bot, abbba\bot, abbbb\bot\}$. The Patricia trie of S is:

Lemma: A Patricia trie on m strings has at most 2m - 1 nodes.

Proof: The Patricia trie has m leaves (each corresponding to a different string in S), and is a full binary tree (each internal node has 2 child nodes).

Query

A Patricial trie answers a query with string q in O(1+|q|) time.

How would you answer an exact matching query with $q=\mathtt{aabab}\bot$. How about $q=\mathtt{abbab}\bot$?

The Prefix Matching Problem

Let S be a set of m strings, each of which has an integer id. Given a string q, a query reports the ids of all the strings $s \in S$ such that q is a prefix of s.

Example

Let $S = \{abbba\bot, aabaa\bot, aaabb\bot, abbb\bot, aabab\bot, abbbb\bot\}$, where the strings have ids 1, 2, ..., 6, respectively. Then:

- for q = ab, we should return ids 1, 4, 6.
- for q = aab, return 2, 5.
- for q = ba, return nothing.

The Prefix Matching Problem

Using a Patricia trie of O(m) space, we can answer a prefix matching query with string q in O(1+|q|+k) time, where k is the number of ids reported.

Think: how?

The Substring Matching Problem

Let σ be a string of n characters. Given a string q, a query returns the starting positions of all the occurrences of q in σ .

Example

Let $\sigma = aabbabab$. Then:

- for q = abb, return 2 because substring abb starts at the 2nd position of σ .
- for q = bab, return 4 and 6.
- for q = bbb, return nothing.

Suffixes

For a string s = s[1]s[2]...s[l], the string s[i]s[i+1]...s[l] is called a suffix of s for each $i \in [1, l]$.

Clearly, a string s has |s| suffixes.

Example

Suffixes

Recall that, in our substring matching problem, the input string is σ . Denote by S the set of all the suffixes of σ .

A query string q is a substring of σ if and only if q is a prefix of a string in S.

Earlier, we proved the following for the prefix matching problem:

Lemma: Let S be a set of m strings, each of which has an integer id, and has been stored as an array. We can build a structure of O(m) space such that, given a query string q, the ids of all strings $s \in S$ such that q is a prefix of s can be reported in O(|q|+k) time, where k is the number of ids reported.

Suffix Trees

We thus immediately obtain:

Lemma: For the substring matching problem, we can build a structure of O(n) space such that, given a search string q, a query can be answered in O(1+|q|+k) time, where k is the number of reported positions.

The structure implied by the above lemma is called the suffix tree, which is essentially a patricia trie on all the suffixes of σ .