
Tries, Patricia Tries, and Suffix Trees
[Notes for the Training Camp]

Yufei Tao

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

In this lecture, we will look at data structures on a new type of elements:
text strings. Our ultimate goal is solve a difficult problem called substring
matching with a clever structure called the suffix tree.

We will get to the suffix tree in an incremental manner, first starting with

the trie, and then progressing to its space-economical variant: the

Patricia trie. Both of these more fundamental structures tackle a special

version of the substring matching problem: exact matching.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Exact Matching

Define a string to be a sequence of characters, all of which are chosen
from an alphabet Σ. Let S be a set of strings, each of which has a
unique integer id. Given a string q, an exact matching query reports:

the id of q if it exists in S

nothing otherwise.

Example

Suppose that S = {aaabb, aab, aabaa, aabab, aba, abbb, abbba,
abbbb}. Let the ids of these strings be (from left to right) 1, 2, ..., 8,
respectively. Given q = aabaa, a query returns id 3, whereas given
q = abab, it returns nothing.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Prefixes

Let s be a string of length t = |s| (i.e., |s| represents the number of
characters in s). We can write its characters (from left to right) as
s[1]s[2], ...s[t], respectively.

For any i ∈ [1, t], the string s[1]s[2]...s[i] is called a prefix of s. Specially,
an empty string ∅ is also a prefix of s.

Example

s = aabaa has 6 prefixes: ∅, a, aa, aab, aaba, and aabaa.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Prefix-Free

A set S of strings is called prefix-free if no string in S is a prefix of any
other string in S . Any set of strings can be made prefix-free by
appending a special “termination symbol” to each string in S .

Example: Let S = {aaabb, aab, aabaa, aabab, aba, abbb,
abbba, abbbb}. We can convert S to {aaabb⊥, aab⊥, aabaa⊥,
aabab⊥, aba⊥, abbb⊥, abbba⊥, abbbb⊥}, which is prefix-free.

From now on, we will consider that S is prefix-free, and that every string

in S ends with ⊥.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Tries

The trie on S is a tree T defined as follows:

Each node u of T corresponds to a distinct string P(u) which is a
prefix of some string in S .

Let u be a node, and v a child node of u. Then:

P(u) is a prefix of P(v).
|P(v)| = |P(u)|+ 1.

Each node u is labeled with a character c , which is the last
character of P(u).

Each leaf z has its P(z) equal to a string in S .

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Example

Let S = {aaabb⊥, aab⊥, aabaa⊥, aabab⊥, aba⊥, abbb⊥, abbba⊥,
abbbb⊥}. The trie is:

a

∅

a b

a b

b

b

⊥

⊥
a

a

⊥

b

⊥

a

⊥

b

b

a

⊥

b

⊥

⊥

Intuitively, a trie is a tree where strings share prefixes as much as
possible.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Query

A trie answers an exact matching query q in O(1 + |q|) time (think: how
to use only O(1) time to navigate to a child?).

a

∅

a b

a b

b

b

⊥

⊥
a

a

⊥

b

⊥

a

⊥

b

b

a

⊥

b

⊥

⊥

How do we answer an exact matching query with q = aabaa? How

about q = abab?

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

The number of nodes is O(n), where n is the total length of all the
strings in S , namely, n =

∑
s∈S |s|.

Let m be the number of strings in S . Note that n can be far larger
than m.

Next, we will improve the space consumption to O(m), without
affecting the query time, provided that every string in S has been
stored as an array. The new structure is called the Patricia trie.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Storing the Strings as Arrays

Henceforth, we will denote the strings in S as s1, s2, ..., sm, respectively.

We will consider that each si is stored in an array of size |si |, where si [j]

gives the j-th (1 ≤ j ≤ |si |) character of si .

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

LCS

The longest common prefix (LCS) of a set S of strings is a string σ such
that:

σ is a prefix of every string in S .

There is no string σ′ such that σ′ is a prefix of every string in S ,
and |σ′| > |σ|.

For example, the LCS of {aaabb⊥, aab⊥, aabaa⊥} is aa, and that of

{aaabb⊥, baa⊥} is ∅.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Extension Set

Given two strings s1, s2, we use s1 · s2 to denote their concatenation.

Let S be a set of strings, and σ the LCS of S . The extension set of S is
the set of characters c such that σ · c is a prefix of at least one string in
S .

Example

For example, the extension set of {aaabb⊥, aab⊥, aabaa⊥} is {a, b}.
The extension set of {aaabb⊥, baa⊥} is also {a, b}.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Patricia Trie

The Patricia trie T on S is a tree where each node u carries a positional
index PI (u), and a representative pointer RP(u). T can be recursively
defined as follows:

1 If |S | = 1, then T has only one node u with PI (u) = 1, and RP(u)
referencing the array of the (only) string in S .

2 Otherwise:

Let σ be the LCS of S . The root of T is a node u with
PI (u) = |σ|, and RP(u) referencing the array of an arbitrary
string in S .

Let E be the extension set of S . Then, u has |E | subtrees, one
for each character c in E . Specifically, the subtree for c is a
Patricia trie on the set of strings in S with σ · c as a prefix.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Example

Let S = {aaabb⊥, aabaa⊥, aabab⊥, abbb⊥, abbba⊥, abbbb⊥}. The
Patricia trie of S is:

1
a b

b

6

6

a b

aaabb⊥ aabaa⊥ aabab⊥ abbb⊥ abbba⊥ abbbb⊥

2
a

4
a b

6

4

5 6 6

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Lemma: A Patricia trie on m strings has at most 2m − 1 nodes.

Proof: The Patricia trie has m leaves (each corresponding to a different
string in S), and is a full binary tree (each internal node has 2 child
nodes).

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Query

A Patricial trie answers a query with string q in O(1 + |q|) time.

1
a b

b

6

6

a b

aaabb⊥ aabaa⊥ aabab⊥ abbb⊥ abbba⊥ abbbb⊥

2
a

4
a b

6

4

5 6 6

How would you answer an exact matching query with q = aabab⊥. How
about q = abbab⊥?

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

The Prefix Matching Problem

Let S be a set of m strings, each of which has an integer id. Given a
string q, a query reports the ids of all the strings s ∈ S such that q is a
prefix of s.

Example

Let S = {abbba⊥, aabaa⊥, aaabb⊥, abbb⊥, aabab⊥, abbbb⊥}, where
the strings have ids 1, 2, ..., 6, respectively. Then:

for q = ab, we should return ids 1, 4, 6.

for q = aab, return 2, 5.

for q = ba, return nothing.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

The Prefix Matching Problem

Using a Patricia trie of O(m) space, we can answer a prefix matching
query with string q in O(1 + |q|+ k) time, where k is the number of ids
reported.

Think: how?

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

The Substring Matching Problem

Let σ be a string of n characters. Given a string q, a query returns the
starting positions of all the occurrences of q in σ.

Example

Let σ = aabbabab. Then:

for q = abb, return 2 because substring abb starts at the 2nd
position of σ.

for q = bab, return 4 and 6.

for q = bbb, return nothing.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Suffixes

For a string s = s[1]s[2]...s[l], the string s[i]s[i + 1]...s[l] is called a suffix
of s for each i ∈ [1, l].

Clearly, a string s has |s| suffixes.

Example

String aabbabab has 8 suffixes: aabbabab, abbabab, bbabab, babab,
abab, bab, ab, b.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Suffixes

Recall that, in our substring matching problem, the input string is σ.
Denote by S the set of all the suffixes of σ.

A query string q is a substring of σ if and only if q is a prefix of a
string in S .

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Earlier, we proved the following for the prefix matching problem:

Lemma: Let S be a set of m strings, each of which has an integer id,
and has been stored as an array. We can build a structure of O(m) space
such that, given a query string q, the ids of all strings s ∈ S such that q
is a prefix of s can be reported in O(|q|+ k) time, where k is the number
of ids reported.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

Suffix Trees

We thus immediately obtain:

Lemma: For the substring matching problem, we can build a structure of
O(n) space such that, given a search string q, a query can be answered
in O(1 + |q|+ k) time, where k is the number of reported positions.

The structure implied by the above lemma is called the suffix tree,
which is essentially a patricia trie on all the suffixes of σ.

COMP3506/7505, Uni of Queensland Tries, Patricia Tries, and Suffix Trees

