
The kd-Tree
[Notes for the Training Camp]

Yufei Tao

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland The kd-Tree



All our structures so far are “one-dimensional”, in the sense that each
data element is an integer. In this talk, we will see our first
two-dimensional data structure—named the kd-tree—for the classic
problem of range reporting.

COMP3506/7505, Uni of Queensland The kd-Tree



Range Reporting

Let R denote the set of real values. Let P be a set of n points in R2

(namely, each point has the form (x , y) where x and y are real values).

Given an axis-parallel rectangle q (namely q has the form
[x1, x2]× [y1, y2]), a range reporting query returns all the points of P that
are covered by q.

Our objective is to store P in a data structure, so that we can answer all
queries efficiently.

Think: How would you solve the range reporting problem in one-
dimensional space?

COMP3506/7505, Uni of Queensland The kd-Tree



The kd-tree that we will learn next solves the problem with O(n)
space and O(

√
n+ k) query time, where k is the number of points

reported.

COMP3506/7505, Uni of Queensland The kd-Tree



kd-Tree

We will describe the structure in a recursive manner.

Base Case: If n = 0, the tree is empty. If n = 1, then the tree has a
single node which stores the only point in P.

General Case: n ≥ 2. Find a vertical line `x that divides P as evenly as
possible. Let Pleft be the set of points of P on the left of `x , and similar,
Pright the set of points on the right.

Create a root node r , and store `x at r .

If Pleft has only 1 point, create a leaf node storing this point as the left
child of r . Similarly, if Pright has only 1 point, create a leaf node storing
this point as the right child of r .

Next, we consider that Pleft and Pright have at least 2 points.

COMP3506/7505, Uni of Queensland The kd-Tree



kd-Tree

General Case (cont.): Find a horizontal line `y1 that divides Pleft as
evenly as possible into two sets P1,P2. Similarly, find a horizontal line `y2
that divides Pright as evenly as possible into two sets P3,P4.

Create a node u1 as the left child of r , and u2 as the right child of r .
Store ly1 at u1, and ly2 at u2. Then comes the recursive construction:

Create a kd-tree on P1, and make its root the left child of u1.

Create a kd-tree on P2, and make its root the right child of u1.

Create a kd-tree on P3, and make its root the left child of u2.

Create a kd-tree on P4, and make its root the right child of u2.

COMP3506/7505, Uni of Queensland The kd-Tree



Example

a
b

c

d
e

f
g

hi
j

k
l

`1

`2

`3

`4

`5

`6

`7

`8

`9

`10

`11

`1

`3

`7`6`5

`2

`11h `10 e`9i `8 a

`4

jk cfgl bd

Observe that every node corresponds to a rectangle in the data space.
For example, the root corresponds to the entire data space. Its right child
corresponds to the part of the data space on the right of `1. The node l6
corresponds to the part that is to the right of `1, and below `3.

COMP3506/7505, Uni of Queensland The kd-Tree



Query

Given a node u, let R(u) be the rectangle in the data space that u
corresponds to.

Given a query with rectangle q, we answer it as follows:

Simply visit all the nodes u whose R(u) intersects q.

At a leaf z , if the point p at z falls into q, report p.

COMP3506/7505, Uni of Queensland The kd-Tree



The kd-tree clearly occupies O(n) space—noticing that every in-
ternal node of the kd-tree must have 2 children (why?), and that
the tree has n leaves.

It is easy to construct the tree in O(n log n) time (how?).

Next, we will prove that the query algorithm has running time
O(
√
n + k).

COMP3506/7505, Uni of Queensland The kd-Tree



Analysis

Given a vertical/horizontal line `, we say that ` intersects a node u if `
intersects R(u).

The following is an important lemma behind the query efficiency:

Lemma: Any vertical line intersects O(
√
n) nodes.

COMP3506/7505, Uni of Queensland The kd-Tree



Analysis

Proof: Denote by f (n) the largest number of nodes in a kd-tree of n
points that can be intersected by any vertical line. Let us analyze what
these nodes are.

First, the root r itself, whose rectangle is the whole universe, obviously
intersects `. Let us assume, without loss of generality, that ` is to the
right of the split line at r . Let u be the right child of r . Clearly, ` also
intersects R(u).

The next slide shows a figure about this.

COMP3506/7505, Uni of Queensland The kd-Tree



Analysis

`1 `

`2

`1
r

u

v2v1

`2

How about the nodes in the subtrees rooted at v1 and v2? How many of
them intersect `? Observe that, each subtree is a kd-tree on at most n/4
nodes! So the answer is at most f (n/4) per subtree!

COMP3506/7505, Uni of Queensland The kd-Tree



Analysis

Therefore, we have obtained an recurrence about f (n):

f (n) ≤ 2 + 2f (n/4).

The terminating condition is f (1) = 1.

Solving the recurrence gives f (n) = O(
√
n) .

We can also prove that any horizontal line intersects the rectangles
of O(

√
n) noes.

COMP3506/7505, Uni of Queensland The kd-Tree



Analysis

We are now ready for our grand theorem:

Theorem: The kd-tree answers a query in O(
√
n + k) time.

Proof: Let `1, `2, `3, `4 be the vertical or horizontal lines defining the
boundary of the query rectangle q, as shown below:

`1 `2

`3

`4

q

COMP3506/7505, Uni of Queensland The kd-Tree



Analysis

Recall that every node u visited by the query must have its R(u)
intersecting q. We divide such nodes u into two categories:

Category 1: R(u) intersects at least one edge of q.

Category 2: R(u) falls completely inside q.

How many nodes are there in the first category? The answer is at most
4
√
n—noticing that every node u of this category must have R(u)

intersecting one of `1, `2, `3 and `4!

So it remains to bound the number of nodes in Category 2. We will show
that there are only O(k) of them. This will complete the proof that the
query time is O(

√
n + k).

COMP3506/7505, Uni of Queensland The kd-Tree



Analysis

Let v be a node in Category 2. Call v a top node if its parent is not in
Category 2. Observe that:

The subtrees of two top nodes must be disjoint (i.e., no top node
can be a proper descendant of another).

Every node in Category 2 must be in the subtree of a top node.

Every leaf descendant of a top node must store a point falling in q.

Since the number of internal nodes in each subtree equals the number of
leaves in that subtree minus 1, the above facts imply that Category 2 has
O(k) nodes.

COMP3506/7505, Uni of Queensland The kd-Tree



We have seen range reporting in 1d space, and 2d space. The
problem definition extends to any d-dimensional space, where d is
an integer.

The kd-tree, too, can be extended! In d-dimensional space (where
d = O(1) and d ≥ 2), it still uses O(n) space, and answers a query
in O(n1−1/d + k) time.

How?

COMP3506/7505, Uni of Queensland The kd-Tree


