
Fully Dynamic kd-Tree
[Notes for the Training Camp]

Yufei Tao

ITEE
University of Queensland

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Last time we learned a new data structure called the kd-tree, which can
be constructed efficiently, but does not seem easy to update (why?).
Today, we will explain how to extend it to support updates.

Interestingly, we will achieve the purpose using a technique that works for
all the structures that are difficult to update, but can be constructed fast.
The structure is called logarithmic rebuilding, and turns the kd-tree into
a semi-dynamic structure that supports insertions.

The kd-tree, in fact, easily supports deletions. Combining this with
logarithmic rebuilding gives our final fully dynamic kd-tree that supports
both insertions and deletions.

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Recall:

Range Reporting

Let R denote the set of real values. Let P be a set of n points in R2.

Given an axis-parallel rectangle q (namely q has the form
[x1, x2]× [y1, y2]), a range reporting query returns all the points of P that
are covered by q.

Our objective is to store P in a data structure, so that we can answer all
queries efficiently.

The kd-tree achieves the purpose with O(n) space and O(
√
n + k) query

time (where k is the number of points reported), and can be constructed
in O(n log n) time.

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Next, we will show how the kd-tree can support a deletion in
O(log n) time amortized, assuming no insertions.

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Deletion

Let N be the number of points when the kd-tree was first constructed.
We will use n to denote the number of remaining points in the kd-tree.

Suppose that we are deleting a point p. First, we find the leaf z where p
is stored. This can be done in O(log n) time by descending a single
root-to-leaf path (why?).

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Deletion

Then, we simply remove z from the tree. Let u be the (original) parent
of z . If now u has only a single child v , remove u by asking v to take its
place (after which v replaces u as a child of the parent of u).

u

zv
⇒

û

v

û

The whole process finishes in O(log n) time.

Note that the tree remains full, namely, every internal node has 2
child nodes.

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Query Time after Deletions

Still O(
√
N + k)! Why?

Think about our previous proof for the term O(
√
N). All the nodes

that remain in the tree are exactly nodes in the original kd-tree
before all the deletions! So, a vertical/horizontal line cannot
intersect with (the rectangles of) more nodes than before!

Think about our previous proof for the term O(k). All we need is
that the tree should be full.

How to ensure that the query time is always O(
√
n + k)?

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Global Rebuilding

Let us rebuild the whole tree on the remaining points when n has dropped
to N/2. The cost of this is O(n log n), or O(log n) amortized (why?)!

Space consumption: O(N) = O(n).

Query time: O(
√
N + k) = O(

√
n + k).

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Now we have got:

We can maintain a kd-tree on n points that consumes O(n) space,
answers a query in O(

√
n + k) time, and supports a deletion in

O(log n) amortized time.

Now let us attend to insertions by introducing the logarithmic rebuilding
technique.

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Logarithmic Rebuilding

Let us first consider that we have only insertions, but not deletions.

At any moment, we will maintain at most h = O(log n) kd-trees T0, T1,
..., Th−1, such that the i-th (i ∈ [1, h]) tree stores precisely 2i points.
Each point is stored in only one kd-tree.

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Logarithmic Rebuilding

To insert a new point p, we

Identify the smallest i ≥ 0 such that Ti is empty, and

Destroy all of T0,T1, ...,Ti−1. Collect all the points there into a set
S .

Construct Ti on S ∪ {p}.
Note that |Ti | = 2i .

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Analysis

Construction of Ti takes O(2i log 2i) time. Charge the cost on the 2i

points in Ti , each of which is amortized O(log 2i) = O(log n) time.

Each point can be charged only O(log n) times (it moves only to a bigger
tree).

Amortized insertion time per point: O(log2 n).

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Querying the Structure

Simply search all the h trees T0,T1, ...,Th−1.

Query time:

O(
√

2h−1 +
√

2h−2 + ... +
√

20 + k) = O(
√
n + k).

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Next, we will combine all the above discussion to make a fully
dynamic structure that supports both insertions and deletions.

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Structure

If n ≤ 4, simply rebuild the whole tree every time there is an insertion or
deletion.

Consider n > 4. We periodically rebuild the whole tree. Let N be the
number of points in the previous rebuilding. We will rebuild the whole
tree after there has been N/2 updates (regardless of they are insertions
or deletions).

At any moment, we will maintain at most h = O(logN) kd-trees T0, T1,
..., Th−1, such that the i-th (i ∈ [1, h]) tree stores at most 2i points.
Each point is stored in only one kd-tree.

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Deletion

To delete a point p, first find the kd-tree Ti containing the point. Then,
delete it from Ti .

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Insertion

To insert a new point p, we

Identify the smallest i ≥ 0 such that

i∑
i=0

|Ti | ≤ 2i .

Destroy all of T0,T1, ...,Ti . Collect all the points there into a set S .

Construct Ti on S ∪ {p}.

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

Our structure:

Consumes O(n) space.

Answers a query in O(
√
n + k) time.

Handles an insertion in O(log2 n) amortized time.

Handles a deletion in O(log n) amortized time.

How to prove it?

COMP3506/7505, Uni of Queensland Fully Dynamic kd-Tree

