Classification, Decision Trees, and a Generalization Theorem

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
In **classification**, we are given a training set containing objects of two **classes** and want to learn a **classifier** to predict the class of an object outside the training set. This course will cover several techniques to perform classification effectively. We will start with one such technique: the **decision tree** method.
Classification

Let A_1, \ldots, A_d be d attributes.

Define the **instance space** as $\mathcal{X} = \text{dom}(A_1) \times \text{dom}(A_2) \times \ldots \times \text{dom}(A_d)$ where $\text{dom}(A_i)$ represents the set of possible values on A_i.

Define the **label space** as $\mathcal{Y} = \{-1, 1\}$ (the elements in \mathcal{Y} are called the **class labels**).

Each **instance-label pair** (a.k.a. object) is a pair (x, y) in $\mathcal{X} \times \mathcal{Y}$.

- Note that x is a vector; we use $x[A_i]$ to represent the vector’s value on A_i ($1 \leq i \leq d$).

Denote by \mathcal{D} a probabilistic distribution over $\mathcal{X} \times \mathcal{Y}$.
Goal: Given an object \((x, y)\) drawn from \(\mathcal{D}\), we want to predict its label \(y\) from its attribute values \(x[A_1], \ldots, x[A_d]\).

We will find a function

\[h : \mathcal{X} \rightarrow \mathcal{Y} \]

which is referred to as a classifier (sometimes also called a hypothesis). Given an instance \(x\), we predict its label as \(h(x)\).

The error of \(h\) on \(\mathcal{D}\) — denoted as \(err_\mathcal{D}(h)\) — is defined as:

\[err_\mathcal{D}(h) = Pr_{(x, y) \sim \mathcal{D}}[h(x) \neq y] \]

namely, if we draw an object \((x, y)\) according to \(\mathcal{D}\), what is the probability that \(h\) mis-predicts the label?
Ideally, we want to find an h to minimize $err_D(h)$, but this in general is not possible without the precise information about D.

Instead, we would like to learn a classifier h with small $err_D(h)$ from a training set S where each object is drawn independently from D.
Example: Suppose that we have the following training set:

<table>
<thead>
<tr>
<th>age</th>
<th>education</th>
<th>occupation</th>
<th>loan default</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>high school</td>
<td>self-employed</td>
<td>yes</td>
</tr>
<tr>
<td>32</td>
<td>master</td>
<td>programmer</td>
<td>no</td>
</tr>
<tr>
<td>33</td>
<td>undergrad</td>
<td>lawyer</td>
<td>yes</td>
</tr>
<tr>
<td>37</td>
<td>undergrad</td>
<td>programmer</td>
<td>no</td>
</tr>
<tr>
<td>40</td>
<td>undergrad</td>
<td>self-employed</td>
<td>yes</td>
</tr>
<tr>
<td>45</td>
<td>master</td>
<td>self-employed</td>
<td>no</td>
</tr>
<tr>
<td>48</td>
<td>high school</td>
<td>programmer</td>
<td>no</td>
</tr>
<tr>
<td>50</td>
<td>master</td>
<td>lawyer</td>
<td>no</td>
</tr>
<tr>
<td>52</td>
<td>master</td>
<td>programmer</td>
<td>no</td>
</tr>
<tr>
<td>55</td>
<td>high school</td>
<td>self-employed</td>
<td>no</td>
</tr>
</tbody>
</table>

Now, given a new customer (50, high school, self-employed), how should we predict whether s/he would default?
The **decision tree method** represents a classifier h as a tree.

Example:

```
          occupation
            prog.  self-emp, lawyer
                     no
                    /   \
                  education master or above undergrad or below
                           no
                              /   \
                           age  no
                                      /   \
                                     yes  > 40
                                        /   \
                                       no  no
```

Given an instance (50, high school, self-employed), the above tree returns the class label “no” by descending a root-to-leaf path to the rightmost leaf.
Formally, a decision tree T is a binary tree where

- each leaf node carries a class label: yes or no (namely, 1 or -1);
- each internal node u has two child nodes, and carries a predicate P_u on an attribute A_u.

Given an instance x, T predicts its label as follows:

1. $u \leftarrow$ the root of T.
2. If u is a leaf, return the class label associated with u.
3. If u is an internal node, check whether $x[A_u]$ satisfies P_u:
 - if so, $u \leftarrow$ the left child of u;
 - otherwise, $u \leftarrow$ the right child of u.

Our objective is to produce a good decision tree from the training set S. Next, we will describe a simple algorithm called the Hunt’s algorithm which achieves the purpose reasonably well in practice.
Given a node u in T, define $S(u)$ as follows:

- If u is the root of T, $S(u) = S$.
- Recursively, consider now u as an internal node whose $S(u)$ has been defined. Let v_1 and v_2 be the left and right child nodes of u, respectively.
 - $S(v_1)$ is the set of objects in $S(u)$ that satisfy $P(u)$;
 - $S(v_2) = S(u) \setminus S(v_1)$.

Think: What is $S(u)$ for each node u in the decision tree on Slide 7?
Hunt’s Algorithm

The algorithm builds a decision tree T in a top-down and greedy manner. At each node u, it finds the “best” way to split $S(u)$ according to a certain quality metric.

algorithm Hunt(S)

/* S is the training set; the function returns the root of a decision tree */

1. if all the objects in S belong to the same class
2. return a leaf node with the value of this class
3. if all the objects in S have the same attribute values
4. return a leaf node whose class label is the majority one in S
5. find the “best” split attribute A^* and predicate P^* /* details next slide */
6. $S_1 \leftarrow$ the set of objects in S satisfying P^*; $S_2 \leftarrow S \setminus S_1$
7. $u_1 \leftarrow$ Hunt(S_1); $u_2 \leftarrow$ Hunt(S_2)
8. create a root u with left child u_1 and right child u_2
9. set $A_u \leftarrow A^*$ and $P_u \leftarrow P^*$
10. return u
Implementing Line 5 requires resolving the following issues:

1. What are the possible ways to perform a split?
2. How to evaluate the quality of a split?

We will provide a way to resolve these issues in the next few slides.
A split concerns a single attribute A. We distinguish two types of A:

- **Ordinal**: there is an ordering on A.
- **Nominal**: no ordering makes sense on A.

Example: In the training set of Slide 6, age and education are ordinal attributes, whereas occupation is nominal.
Candidate Split

For an ordinal attribute A, a candidate split is a condition of the form $A \leq v$, where v is a value of A appearing in S.

For a nominal attribute A, a candidate split is a condition of the form $A \in S$, where S is a subset of the values of A appearing in S.

Example: In the training set of Slide 6, “age ≤ 40”, “education \leq undergrad”, and “occupation $\in \{\text{self-employed, lawyer}\}$” are all candidate split predicates.
Quality of a Split

Next, we tackle the second issue of Slide 11 by resorting to **GINI index**. In general, let S be a set of objects whose class labels are known. Define:

\[
\begin{align*}
 n &= |S| \\
 n_y &= \text{number of objects in } S \text{ with label yes} \\
 p_y &= n_y / n \\
 p_n &= 1 - p_y
\end{align*}
\]

The GINI index of S is:

\[
\text{GINI}(S) = 1 - (p_y^2 + p_n^2)
\]
Quality of a Split

Example:

- If \(p_y = 1 \) and \(p_n = 0 \) (i.e., maximum purity), then \(GINI(R) = 0 \).
- If \(p_y = 0.75 \) and \(p_n = 0.25 \), then \(GINI(R) = 0.375 \).
- If \(p_y = 0.5 \) and \(p_n = 0.5 \) (i.e., maximum impurity), then \(GINI(R) = 0.5 \).

It is rudimentary to verify:

Lemma: \(GINI(R) \) ranges from 0 to 0.5. It increases as \(|p_y - p_n| \) decreases.
Quality of a Split

We are ready to resolve the second issue on Slide 11. Suppose that S has been split into S_1 and S_2. We define the **GINI index of the split** as

$$GINI_{\text{split}} = \frac{|S_1|}{|S|} \cdot GINI(S_1) + \frac{|S_2|}{|S|} \cdot GINI(S_2).$$

The **smaller** $GINI_{\text{split}}$ is, the **better** the split quality.
At this point, we have completed the description of Hunt’s algorithm on Slide 10. An important issue has been left out: overfitting, i.e., although a tree may fit the training set well, its error on the distribution \mathcal{D} is actually rather bad.

Next, we will discuss understand what causes overfitting and then fix the issue by modifying the algorithm slightly.
Let P be the set of people in the world. Given a random person, we want to predict whether s/he will commit a crime in her/his life.

Suppose that there are no attributes (i.e., $\mathcal{X} = \emptyset$). Given a training set $S \subseteq P$, Hunt’s algorithm returns a decision tree T that has only a single node (i.e., a leaf). Let c be the label at that leaf; note that T predicts the label of every person in P as c.
Which value of c is ideal for \mathcal{P}? This depends on how many people in \mathcal{P} belong to the yes class. Specifically, let

\[
\pi_y = \frac{\text{number of "yes" people in } \mathcal{P}}{|\mathcal{P}|}
\]

\[
\pi_n = \frac{\text{number of "no" people in } \mathcal{P}}{|\mathcal{P}|}
\]

The optimal choice is to set c to yes if $\pi_y > \pi_n$, or to no otherwise.

Example: Suppose $\pi_y = 0.7$ and $\pi_n = 0.3$. If $c = \text{yes}$, we err with probability 0.3; if $c = \text{no}$, we err with probability 0.7.
However, π_y and π_n are unknown.

We rely on S to infer the relationship between π_y and π_n. If S has more yes objects, we “believe” $\pi_y > \pi_n$ and, hence, set c to yes; otherwise, we set c to no. This is precisely what Hunt’s algorithm does.

To increase the confidence of our belief, we need S to be sufficiently large.

Without enough training data, you should not hope to build a reliable decision tree (lack of statistical significance).
As Hunt’s algorithm builds a decision tree T, the $|S(u)|$ of the current node u continuously decreases as we go deeper. When $|S(u)|$ becomes too small, statistical significance is lost such that the subtree of u becomes unreliable: even though the subtree may fit the training set well, it does not accurately predict the label of an unknown object falling into the subtree. Therefore, overfitting occurs.
Hunt’s Algorithm (Modified)

We now add a heuristic to the algorithm to alleviate overfitting.

algorithm Hunt(S)

/* S is the training set; the function returns the root of a decision tree */

1. if all the objects in S belong to the same class
2. return a leaf node with the value of this class
3. if (all the objects in S have the same attribute values)
 or ($|S|$ is too small)
4. return a leaf node whose class value is the majority one in S
5. find the “best” split attribute A^* and predicate P^*
6. $S_1 \leftarrow$ the set of objects in R satisfying P^*; $S_2 \leftarrow S \setminus S_1$
7. $u_1 \leftarrow$ Hunt(R_1); $u_2 \leftarrow$ Hunt(R_2)
8. create a root u with left child u_1 and right child u_2
9. set $A_u \leftarrow A^*$ and $P_u \leftarrow P^*$
10. return u
Next, we will provide a theoretical explanation about overfitting.

Given a classifier h, define its error on S — denote as $err_S(h)$ — to be:

$$err_S(h) = \frac{|\{(x, y) \in S \mid h(x) \neq y\}|}{|S|}.$$

namely, the percentage of objects in S whose labels are incorrectly predicted by h.

Remark:

- $err_S(h)$ is often called the **empirical error** of h.
- $err_D(h)$ is often called the **generalization error** of h.
Theorem: Let \mathcal{H} be the set of classifiers that can possibly be returned. The following statement holds with probability at least $1 - \delta$ (where $0 < \delta \leq 1$): for any $h \in \mathcal{H}$:

$$ \text{err}_D(h) \leq \text{err}_S(h) + \sqrt{\frac{\ln(1/\delta) + \ln |H|}{2|S|}}. $$

Implications: we should

- look for a decision tree that is both accurate on the training set and small in size;
- increase the size of S as much as possible.
To prove the generalization theorem, we need:

Theorem (Hoeffding Bounds): Let X_1, \ldots, X_n be independent Bernoulli random variables satisfying $\Pr[X_i = 1] = p$ for all $i \in [1, n]$. Set $s = \sum_{i=1}^{n} X_i$. Then, for any $0 \leq \alpha \leq 1$:

$$\Pr\left[\frac{s}{n} > p + \alpha\right] \leq e^{-2n\alpha^2}$$
$$\Pr\left[\frac{s}{n} < p - \alpha\right] \leq e^{-2n\alpha^2}.$$

The proof of the theorem is not required in this course.
We will also need:

Lemma (Union Bound): Let E_1, \ldots, E_n be n arbitrary events such that event E_i happens with probability p_i. Then,

$$\Pr[\text{at least one of } E_1, \ldots, E_n \text{ happens}] \leq \sum_{i=1}^{n} p_i.$$

The proof is rudimentary and left to you.
Proof of the Generalization Theorem

Fix any classifier \(h \in \mathcal{H} \).

Let \(S \) be the training set; set \(n = |S| \). For each \(i \in [1, n] \), define \(X_i = 1 \) if the \(i \)-th object in \(S \) is incorrectly predicted by \(h \), or 0 otherwise. Hence:

\[
err_S(h) = \frac{1}{n} \sum_{i=1}^{n} X_i.
\]
Proof of the Generalization Theorem

Since each object in S is drawn from \mathcal{D} independently, for every $i \in [1, n]$:

$$\Pr[X_i = 1] = err_{\mathcal{D}}(h).$$

By the Hoeffding bounds, we have:

$$\Pr[err_{S}(h) < err_{\mathcal{D}}(h) - \alpha] \leq e^{-2n\alpha^2}$$

which is at most $\delta/|\mathcal{H}|$ by setting $e^{-2n\alpha^2} = \delta/|\mathcal{H}|$, namely

$$\alpha = \sqrt{\frac{\ln(1/\delta) + \ln |\mathcal{H}|}{2n}}.$$

We say that h fails if $err_{S}(h) < err_{\mathcal{D}}(h) - \alpha$.

Y Tao
CMSC5724, CUHK
Proof of the Generalization Theorem

The above analysis shows that each classifier in \mathcal{H} fails with probability at most $\delta/|\mathcal{H}|$. By the Union Bound, the probability that at least one classifier in \mathcal{H} fails is at most δ. Hence, the probability that no classifiers fail is at least $1 - \delta$.

Our proof did not use any properties from decision trees. Indeed, the generalization theorem holds for any type of classifiers.