CMSC5724: Quiz 2

Name: ________________________ Student ID: ________________________

Problem 1 (50%). Let \(P \) be a set of 4 points: \(A = (0, 2) \), \(B = (2, 0) \), \(C = (1, 0) \) and \(D = (-2, 0) \) where \(B \) and \(C \) have label 1, while \(A \) and \(D \) have label \(-1\). Run Margin Perceptron on \(P \) with \(\gamma_{\text{guess}} = \frac{6}{\sqrt{13}} \). Recall that the algorithm maintains a vector \(w \) that describes a linear classifier. Show the value of \(w \) after every adjustment and the violation point used to do the adjustment.

Solution: At the beginning of Margin Perceptron, \(w = (0, 0) \).

Iteration 1. As \(w \cdot A > 0 \), we update \(w \) to \(w - A = (0, 0) - (0, 2) = (0, -2) \).

Iteration 2. As \(w \cdot B < 0 \), we update \(w \) to \(w + B = (0, -2) + (2, 0) = (2, -2) \).

Iteration 3. As the distance between \(C \) and the line \(w \cdot x = 0 \) is \(\frac{1}{\sqrt{2}} < \frac{\gamma_{\text{guess}}}{2} \), we update \(w \) to \(w + C = (2, -2) + (1, 0) = (3, -2) \).

Iteration 4. No more violation. The final \(w \) is \((3, -2) \).

Problem 2 (50%). Define a *linear classifier* in 2D space as:

\[
h(x, y) = \begin{cases}
1 & \text{if } ax + by \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

where \(a \) and \(b \) are real-valued coefficients. Let \(\mathcal{H} \) be the set of all linear classifiers. Prove: \(\mathcal{H} \) cannot shatter the set of points \(A, B, \) and \(C \) shown in the figure below.

![Diagram of points A, B, C, and origin](origin)

Solution. If \(\mathcal{H} \) can shatter \(\{A, B, C\} \), there is a classifier \(h \in \mathcal{H} \) that assigns label 1 to all three points. Then, \(h \) must assign label 1 to every point inside the triangle \(ABC \). Let \(\Gamma \) an infinitesimally small circle centered at the origin. All the points on \(\Gamma \) are assigned 1 by \(h \). This is not possible because every linear classifier must assign \(-1\) to half of \(\Gamma \).