Let P be a set of n points in d-dimensional space, where d is a very large value. Informally, the goal of **dimensionality reduction** is to convert P into a set P' of points in a k-dimensional space where $k < d$, such that P' loses as little information about P as possible.

Today, we will learn a popular method of dimensionality reduction called **principled component analysis** (PCA).
A vector \mathbf{v} is a $d \times 1$ matrix: $\mathbf{v} = (v[1], \ldots, v[d])^T$.

A point can be represented as a vector.

A vector \mathbf{v} is a **unit vector** if $\sum_{i=1}^{d} v[i]^2 = 1$.

Dot product $\mathbf{v}_1 \cdot \mathbf{v}_2 = \sum_{i=1}^{d} (v_1[i]v_2[i])$.

If two vectors $\mathbf{v}_1, \mathbf{v}_2$ are orthogonal, $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$.

Let \mathbf{p} be a point and \mathbf{v} a unit vector. Then, $\mathbf{p} \cdot \mathbf{v}$ gives the distance from the origin to the projection of \mathbf{p} on \mathbf{v}.
Let S be a set of real numbers $r_1, ..., r_m$. The mean of S equals:

$$\text{mean}(S) = \frac{1}{m} \sum_{i=1}^{m} r_i.$$

The variance of S equals:

$$\text{var}(S) = \frac{1}{m} \sum_{i=1}^{m} (r_i - \text{mean}(S))^2.$$
Let P be a set of $n d$-dimensional points p_1, \ldots, p_n. Its co-variance between dimensions i and j (where $1 \leq i \leq j \leq d$) equals

$$
\frac{1}{n} \sum_{k=1}^{n} (p_k[i] - mean_i)(p_k[j] - mean_j)
$$

where $mean_i$ (resp., $mean_j$) is the mean of the coordinates in P along dimension i (resp., j).
The **co-variance matrix** A of point set P is a $d \times d$ matrix whose value at the i-th row and j-th column ($i, j \in [1, d]$) is the co-variance of P between dimensions i and j.

Note that A is symmetric, namely, $A = A^T$.
Let A be a $d \times d$ matrix. If

$$A\mathbf{v} = \lambda \mathbf{v}$$

for some $d \times 1$ unit vector \mathbf{v} and some real value λ, then \mathbf{v} is called a unit eigenvector of A and λ is called an eigenvalue of A.
algorithm \((P, k)\)
/* input: \(P\) is a set of \(d\)-dimensional points and \(k\) is an integer in \([1, d]\) */
/* output: a subspace defined by \(k\) orthogonal vectors */
1. shift \(P\) such that its geometric mean is at the origin of the data space
2. \(A \leftarrow \) the co-variance matrix of \(P\)
3. compute all the \(d\) unit eigenvectors
4. arrange the eigenvectors in descending order of their eigenvalues
5. return the first \(k\) eigenvectors \(\mathbf{v}_1, \ldots, \mathbf{v}_k\)

Note

Each point \(p\) is then converted to a \(k\)-dimensional point whose \(i\)-th \((1 \leq i \leq k)\) coordinate is \(\mathbf{v}_i \cdot p\).
Here is a key property of PCA.

v_1 is the direction along which the projections of P have the largest variance. In general, v_i ($i > 1$) is the direction along which P has the largest variance, among all directions orthogonal to all of $v_1, ..., v_{i-1}$.

Next we will prove the above for v_1 and v_2. Then, the cases with $v_3, ..., v_i$ follow the same idea.
Formally, redefine P be a set of n d-dimensional points with zero mean on all dimensions. Let w be a unit vector. We can project P onto w to obtain a set of 1d values: $S = \{ p \cdot w \mid p \in P \}$. Define the quality of w be $\text{var}(S)$.

Theorem 1

The first eigenvector output by PCA has the highest quality.
Proof of Theorem 1

Let X be the $n \times d$ matrix where each row lists the coordinates of a point in P. Thus, we can view S as a vector Xw. Thus:

$$\text{var}(S) = \frac{1}{n} (Xw)^T (Xw)$$

$$= w^T X^T X w$$

$$= w^T A w$$

where A is the covariance matrix of P. Hence, we want to maximize the above subject to the constraint that $w^T w = 1.$
Proof of Theorem 1 (Cont.)

Now we apply the method of Lagrange multipliers to find the maximum. Introduce a real value λ, and now consider the objective function

$$f(w, \lambda) = w^T A w - \lambda (w^T w - 1) \implies$$

$$\frac{\partial f}{\partial w} = 2 A w - 2 \lambda w$$

Equating the above 0 gives $A w = \lambda w$. In other words, w needs to be an eigenvector, and λ the corresponding eigenvalue.
Proof of Theorem 1 (Cont.)

Now it remains to check which eigenvector gives the largest variance. Observe that:

\[
\text{var}(S) = w^T A w = w^T \lambda w = \lambda
\]

In other words, when we choose eigenvector \(w\) as our solution, its quality is exactly the eigenvalue \(\lambda\). Hence, the eigenvector with the maximum eigenvalue is what we are looking for. □
Theorem 2

The second eigenvector output by PCA has the highest quality, among all the vectors w orthogonal to the first eigenvector v_1.
Proof of Theorem 2

Let A be the covariance matrix of P. As shown in the proof of Theorem 1, we proved that

$$\text{var}(S) = w^T A w.$$

Hence, we want to maximize the above subject to the constraints $w^T w = 1$ and $w^T v_1 = 0$.

Now we apply the method of Lagrange multipliers to find the maximum. Introduce real values λ and ϕ, and now consider the objective function

$$f(w, \lambda, \phi) = w^T A w - \lambda (w^T w - 1) - \phi w^T v_1 \Rightarrow$$

$$\frac{\partial f}{\partial w} = 2 A w - 2 \lambda w - \phi v_1.$$
Proof of Theorem 2 (Cont.)

The optimal \mathbf{w} needs to satisfy $\frac{\partial f}{\partial \mathbf{w}} = 0$, namely:

$$2\mathbf{Aw} - 2\lambda \mathbf{w} - \phi \mathbf{v}_1 = 0. \quad (1)$$

Next we prove that ϕ must be 0. To see this, multiplying both sides of (1) by \mathbf{v}_1^T, we get:

$$2\mathbf{v}_1^T \mathbf{Aw} - 2\lambda \mathbf{v}_1^T \mathbf{w} + \phi \mathbf{v}_1^T \mathbf{v}_1 = 0. \quad (2)$$

We know that $\mathbf{v}_1^T \mathbf{w} = 0$, and $\mathbf{v}_1^T \mathbf{v}_1 = 1$. Furthermore,

$$\mathbf{v}_1^T \mathbf{Aw} = \mathbf{w}^T \mathbf{A}^T \mathbf{v}_1 = \mathbf{w}^T \mathbf{Av}_1 = \mathbf{w}^T (\mathbf{Av}_1) = \mathbf{w}^T \mathbf{v}_1 = 0.$$

Hence, from (2), we get $\phi = 0$.

Proof of Theorem 2 (Cont.)

Therefore, from (1), we know:

\[2Aw - 2\lambda w = 0 \]

namely, \(w \) must also be an eigenvector.

From the proof of Theorem 1, we know that \(\text{var}(S) \) equals the eigenvalue corresponding to \(w \). This thus indicates that \(w \) is the eigenvector of \(A \) with the second largest eigenvalue.