Problem 1. Consider the training set \(P \) of points shown below:

where the two dots have label 1, the cross has label 2, and the box has label 3. Run multiclass Perceptron to find a generalized linear classifier to separate \(P \).

Answer: At the beginning, \(\vec{w}_1 = \vec{w}_2 = \vec{w}_3 = [0, 0] \).

Round 1: Violation point \(D \), \(\ell = 2 \), \(z = 1 \). Hence, \(\vec{w}_1 = [-1, -4], \vec{w}_2 = [1, 4], \vec{w}_3 = [0, 0] \).

Round 2: Violation point \(B \), \(\ell = 3 \), \(z = 2 \). Hence, \(\vec{w}_1 = [-1, -4], \vec{w}_2 = [4, 3], \vec{w}_3 = [-3, 1] \).

Round 3: Violation point \(C \), \(\ell = 1 \), \(z = 2 \). Hence, \(\vec{w}_1 = [3, -6], \vec{w}_2 = [0, 5], \vec{w}_3 = [-3, 1] \).

No more violations.

Problem 2. Calculate the margin of the classifier you obtained in the previous problem.

Answer: Let \(W \) be the set of weight vectors obtained.

\[
\text{margin}(A \mid W) = \min \left(\frac{\vec{w}_1 \cdot \vec{A} - \vec{w}_2 \cdot \vec{A}}{\sqrt{2 \times \sum_i |w_i|^2}}, \frac{\vec{w}_1 \cdot \vec{A} - \vec{w}_3 \cdot \vec{A}}{\sqrt{2 \times \sum_i |w_i|^2}} \right) = \min \left(\frac{27 - (-25)}{\sqrt{2 \times 80}}, \frac{27 - (-2)}{\sqrt{2 \times 80}} \right) = \frac{29}{\sqrt{2 \times 80}}
\]

Similarly,

\[
\text{margin}(B \mid W) = \min \left(\frac{10 - (-15)}{\sqrt{2 \times 80}}, \frac{10 - 5}{\sqrt{2 \times 80}} \right) = \frac{5}{\sqrt{2 \times 80}}
\]

\[
\text{margin}(C \mid W) = \min \left(\frac{24 - (-10)}{\sqrt{2 \times 80}}, \frac{24 - (-14)}{\sqrt{2 \times 80}} \right) = \frac{34}{\sqrt{2 \times 80}}
\]

\[
\text{margin}(D \mid W) = \min \left(\frac{20 - (-21)}{\sqrt{2 \times 80}}, \frac{20 - 1}{\sqrt{2 \times 80}} \right) = \frac{19}{\sqrt{2 \times 80}}
\]

Therefore, the margin equals \(\frac{5}{\sqrt{2 \times 80}} \).

Problem 3. Suppose we run multiclass Perceptron on \(k = 2 \). Let \(\{\vec{w}_1, \vec{w}_2\} \) be the set of weight vectors returned. Prove: \(\vec{w}_1 = -\vec{w}_2 \).

Answer: It suffices to prove that \(\vec{w}_1 + \vec{w}_2 = \vec{0} \) after every round. This obviously holds at the beginning because \(\vec{w}_1 = \vec{w}_2 = \vec{0} \). Suppose that \(\vec{w}_1 + \vec{w}_2 = \vec{0} \) before the next round starts. Let \(p \) be the violation point used in the round to do adjustments. Since we always add \(p \) to a weight vector but subtract \(p \) from the other weight vector, \(\vec{w}_1 + \vec{w}_2 \) is still \(\vec{0} \) at the end of the round.

Problem 4. Continuing on Problem 3, prove: the “margin” of \(W = \{\vec{w}_1, \vec{w}_2\} \) as defined in multiclass Perceptron is precisely the “margin” as defined in (the traditional) Perceptron (i.e., the smallest distance from a point in the training set \(P \) to the separation plane).
Answer: It suffices to prove: for each point p in the training set, $\text{margin}(p \mid W)$ is precisely the distance from p to the separation plane.

Without loss of generality, assume that p is classified as class 1, i.e., $\vec{w}_1 \cdot \vec{p} > \vec{w}_2 \cdot \vec{p}$. We have:

\[
\text{margin}(p \mid W) = \frac{\vec{w}_1 \cdot \vec{p} - \vec{w}_2 \cdot \vec{p}}{\sqrt{2(|\vec{w}_1|^2 + |\vec{w}_2|^2)}} \\
= \frac{2\vec{w}_1 \cdot \vec{p}}{\sqrt{4|\vec{w}_1|^2}} \\
= \frac{\vec{w}_1 \cdot \vec{p}}{|\vec{w}_1|}
\]

which is the distance from p to the separation plane, as promised.