Dimensionality Reduction with PCA

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Dimensionality Reduction with PCA

1/19

・ロト ・同ト ・ヨト ・ヨト

Let *P* be a set of *n* points in *d*-dimensional space, where *d* is a very large value (possibly even larger than *n*). Informally, the goal of dimensionality reduction is to convert *P* into a set *P'* of points in a *k*-dimensional space where k < d, such that *P'* loses as little information about *P* as possible.

2/19

- 4 目 ト - 日 ト - 4

Example. We can convert 2d points into 1d ones by projecting them onto a line ℓ .

Dimensionality Reduction with PCA

3/19

< • • • **•** •

- Better mining efficiency and/or effectiveness.
 - Most data mining algorithms work poorly in high dimensional space (a phenomenon known as the curse of dimensionality).
- Compression.
- Data visualization.
- ...

Dimensionality Reduction with PCA

4/19

・ロト ・同ト ・ヨト ・ヨト

- A vector \mathbf{v} is a $d \times 1$ matrix: $\mathbf{v} = (v[1], ..., v[d])^T$.
- A point can be represented as vector.
- A vector \mathbf{v} is a unit vector if $\sum_{i=1}^{d} v[i]^2 = 1$.
- Dot product $v_1 \cdot v_2 = \sum_{i=1}^d (v_1[i]v_2[i]).$
- If two vectors $\mathbf{v_1}, \mathbf{v_2}$ are orthogonal, $\mathbf{v_1} \cdot \mathbf{v_2} = 0$.
- Let *p* be a point and *v* a unit vector. Then, *p* · *v* gives the distance from the origin to the projection of *p* on *v*.

5/19

イロト イポト イラト イラト

Let S be a set of real numbers $r_1, ..., r_m$. The mean of S equals:

$$mean(S) = \frac{1}{m} \sum_{i=1}^{m} r_i.$$

The variance of *S* equals:

$$var(S) = \frac{1}{m}\sum_{i=1}^{m}(r_i - mean(S))^2.$$

Dimensionality Reduction with PCA

э.

6/19

< ロ > < 部 > < き > < き >

Let P be a set of 2d points $p_1, ..., p_n$. Its co-variance between dimensions i and j (where $1 \le i \le j \le d$) equals

$$cov = \frac{1}{n}\sum_{k=1}^{n}(p_k[i] - mean_i)(p_k[j] - mean_j)$$

where $mean_i$ ($mean_j$) is the mean of the coordinates in *P* along dimension *i* (*j*).

э

7/19

イロト イボト イヨト イヨト

The co-variance matrix A of point set P is a $d \times d$ matrix whose value at the *i*-th row and *j*-th column $(i, j \in [1, d])$ is the co-variance of P between dimensions *i* and *j*.

Note that A is symmetric, namely, $A = A^T$.

8/19

・ロト ・同ト ・ヨト ・ヨト

Let A be a $d\times d$ matrix. If for some real value $d\times 1$ unit vector $\pmb{v},$ it holds that

$A\mathbf{v} = \lambda \mathbf{v}$

then v is called a unit eigenvector of A, and λ is called an eigenvalue of A.

э.

9/19

イロト イボト イヨト イヨト

Principle Component Analysis (PCA)

algorithm (P, k)

/* output: $k \leq d$ directional vectors */

- 1. shift P such that its geometric mean is at the origin of the data space
- 2. $A \leftarrow$ the co-variance matrix of P
- 3. compute all the d unit eigenvectors
- 4. arrange the eigenvectors in descending order of their eigenvalues
- 5. return the first k eigenvectors $v_1, ..., v_k$

Note

Each point \boldsymbol{p} is then converted to a *k*-dimensional point whose *i*-th $(1 \le i \le d)$ coordinate is $\boldsymbol{v}_i \cdot \boldsymbol{p}$.

10/19

(日本)

Property of PCA

 v_1 is the direction along which the projections of P have the largest variance. In general, v_i (i > 1) is the direction along which P has the largest variance, among all directions orthogonal to all of $v_1, ..., v_{i-1}$.

Next we will prove this fact for v_1 and v_2 . Then, the case with $v_3, ..., v_i$ follows the same idea.

11/19

Formally, let *P* be a set of *n d*-dimensional points with zero mean on all dimensions. Let **w** be a unit vector. We can project *P* onto **w** to obtain a set of 1d values: $S = \{\mathbf{p} \cdot \mathbf{w} \mid p \in P\}$. Define the quality of **w** be var(S).

Theorem 1

The first eigenvector output by PCA has the highest quality.

Dimensionality Reduction with PCA

12/19

• 同 • • 回 • • 回

Proof of Theorem 1

Let **X** be the $n \times d$ matrix where each row lists out the coordinates of a point in *P*. Thus, we can view *S* as a vector **X***w*. Thus:

$$var(S) = \frac{1}{n} (Xw)^{T} (Xw)$$
$$= w^{T} \frac{X^{T}X}{n} w$$
$$= w^{T} Aw$$

where **A** is the covariance matrix of *P*. Hence, we want to maximize the above subject to the constraint that $\boldsymbol{w}^T \boldsymbol{w} = 1$.

Dimensionality Reduction with PCA

13/19

< ロ > < 同 > < 回 > < 回 > < 回 > <

Proof of Theorem 1 (Cont.)

Now we apply the method of Lagrange multipliers to find the maximum. Introduce a real value λ , and now consider the objective function

$$f(\boldsymbol{w},\lambda) = \boldsymbol{w}^{T}\boldsymbol{A}\boldsymbol{w} - \lambda(\boldsymbol{w}^{T}\boldsymbol{w} - 1) \Rightarrow$$
$$\frac{\partial f}{\partial \boldsymbol{w}} = 2\boldsymbol{A}\boldsymbol{w} - 2\lambda\boldsymbol{w}$$

Equating the above 0 gives $Aw = \lambda w$. In other words, w needs to be an eigenvector, and λ the corresponding eigenvalue.

14/19

(4月) (1日) (1日)

Proof of Theorem 1 (Cont.)

Now it remains to check which eigenvector gives the largest variance. Observe that:

V

$$ar(S) = \mathbf{w}^T \mathbf{A} \mathbf{w}$$

 $= \mathbf{w}^T \lambda \mathbf{w}$
 $= \lambda$

In other words, when we choose eigenvector \boldsymbol{w} as our solution, its quality is exactly the eigenvalue λ . Hence, the eigenvector with the maximum eigenvalue is what we are looking for.

15/19

< 🗇 > < 🖻 > <

Recall our earlier definitions. *P* is a set of *n d*-dimensional points with zero mean on all dimensions. Let **w** be a unit vector. Project *P* onto **w** to obtain a set of 1d values: $S = \{ p \cdot w \mid p \in P \}$. Define the quality of **w** be var(S).

Theorem 2

The second eigenvector output by PCA has the highest quality, among all the vectors \boldsymbol{w} orthogonal to the first eigenvector $\boldsymbol{v_1}$.

16/19

< 回 > < 回 > < 回 >

Proof of Theorem 2

Let A be the covariance matrix of P. As shown in the proof of Theorem 1, we proved that

$$var(S) = \mathbf{w}^T \mathbf{A} \mathbf{w}.$$

Hence, we want to maximize the above subject to the constraints $\boldsymbol{w}^T \boldsymbol{w} = 1$ and $\boldsymbol{w}^T \boldsymbol{v}_1 = 0$.

Now we apply the method of Lagrange multipliers to find the maximum. Introduce real values λ and ϕ , and now consider the objective function

$$f(\boldsymbol{w},\lambda,\phi) = \boldsymbol{w}^{T}\boldsymbol{A}\boldsymbol{w} - \lambda(\boldsymbol{w}^{T}\boldsymbol{w} - 1) - \phi\boldsymbol{w}^{T}\boldsymbol{v}_{1} \Rightarrow$$
$$\frac{\partial f}{\partial \boldsymbol{w}} = 2\boldsymbol{A}\boldsymbol{w} - 2\lambda\boldsymbol{w} - \phi\boldsymbol{v}_{1}.$$

Dimensionality Reduction with PCA

17/19

Proof of Theorem 2 (Cont.)

The optimal **w** needs to satisfy $\frac{\partial f}{\partial \mathbf{w}} = 0$, namely:

$$2\mathbf{A}\mathbf{w} - 2\lambda\mathbf{w} - \phi\mathbf{v_1} = 0. \tag{1}$$

Next we prove that ϕ must be 0. To see this, multiplying both sides of (1) by $\mathbf{v_1}^T$, we get:

$$2\mathbf{v_1}^T \mathbf{A} \mathbf{w} - 2\lambda \mathbf{v_1}^T \mathbf{w} + \phi \mathbf{v_1}^T \mathbf{v_1} = 0.$$
 (2)

We know that $\mathbf{v_1}^T \mathbf{w} = 0$, and $\mathbf{v_1}^T \mathbf{v_1} = 1$. Furthermore,

$$\mathbf{v_1}^T \mathbf{A} \mathbf{w} = \mathbf{w}^T \mathbf{A}^T \mathbf{v_1} = \mathbf{w}^T \mathbf{A} \mathbf{v_1} = \mathbf{w}^T (\mathbf{A} \mathbf{v_1}) = \mathbf{w}^T \mathbf{v_1} = 0.$$

Hence, from (2), we get $\phi = 0$.

Dimensionality Reduction with PCA

18/19

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Proof of Theorem 2 (Cont.)

Therefore, from (1), we know:

$$2\mathbf{A}\mathbf{w} - 2\lambda\mathbf{w} = \mathbf{0}$$

namely, **w** must also be an eigenvector.

From the proof of Theorem 1, we know that var(S) equals the eigenvalue corresponding to \boldsymbol{w} . This thus indicates that \boldsymbol{w} is the eigenvector of A with the second largest eigenvalue.

19/19

<日</th>