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Dimensionality Reduction

Let P be a set of n points in d-dimensional space, where d is a very large
value (possibly even larger than n). Informally, the goal of dimensionality
reduction is to convert P into a set P’ of points in a k-dimensional space
where k < d, such that P’ loses as little information about P as possible.
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Example. We can convert 2d points into 1d ones by projecting them onto
a line /.
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Why Dimensionality Reduction?

@ Better mining efficiency and/or effectiveness.

o Most data mining algorithms work poorly in high dimensional
space (a phenomenon known as the curse of dimensionality).

@ Compression.

@ Data visualization.
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@ A vector visa d x 1 matrix: v = (v[1],...,v[d])7.

A point can be represented as vector.

@ A vector v is a unit vector if 3% v[i]? = 1.

(]

Dot product vy - v = Z,il(vl["] va[i]).

If two vectors vy, v are orthogonal, vy - v = 0.

Let p be a point and v a unit vector. Then, p - v gives the distance
from the origin to the projection of p on v.
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Let S be a set of real numbers r, ..., r,,. The mean of S equals:

mean(S) = 1Zr,-.
i=1

m

The variance of S equals:
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Let P be a set of 2d points ps, ..., p,. Its co-variance between dimensions
i and j (where 1 < < j < d) equals

cov = =S (pulil — meany)(plj] — mean;)
k=1

where mean; (mean;j) is the mean of the coordinates in P along
dimension i (j).
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The co-variance matrix A of point set P is a d X d matrix whose value at
the i-th row and j-th column (i,j € [1,d]) is the co-variance of P
between dimensions i and j.

Note that A is symmetric, namely, A = AT,
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Let A be a d x d matrix. If for some real value d X 1 unit vector v, it
holds that

Av = v

then v is called a unit eigenvector of A, and X is called an eigenvalue of
A.
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Principle Component Analysis (PCA)

algorithm (P, k)

/* output: k < d directional vectors */

1. shift P such that its geometric mean is at the origin of the data space
A < the co-variance matrix of P

compute all the d unit eigenvectors

arrange the eigenvectors in descending order of their eigenvalues
return the first k eigenvectors vy, ..., vk

ok ®N

Each point p is then converted to a k-dimensional point whose i-th
(1 < i< d) coordinate is v; - p.
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Property of PCA

vy is the direction along which the projections of P have the largest
variance. In general, v; (i > 1) is the direction along which P has the
largest variance, among all directions orthogonal to all of vy, ..., vj_3.

A

Next we will prove this fact for vy and v». Then, the case with vs, ...

follows the same idea.

v

, Vi
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Formally, let P be a set of n d-dimensional points with zero mean on all
dimensions. Let w be a unit vector. We can project P onto w to obtain a
set of 1d values: S = {p-w | p € P}. Define the quality of w be var(5).

The first eigenvector output by PCA has the highest quality.
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Proof of Theorem 1

Let X be the n x d matrix where each row lists out the coordinates of a
point in P. Thus, we can view S as a vector Xw. Thus:

var(S) = %(XW)T(XW)
XTX

n
= w'Aw

= w

w

where A is the covariance matrix of P. Hence, we want to maximize the
above subject to the constraint that w’w = 1.
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Proof of Theorem 1 (Cont.)

Now we apply the method of Lagrange multipliers to find the maximum.
Introduce a real value A, and now consider the objective function

fw,)) = wAw - \(w'w—1)=>
of = 2Aw —2)\w
ow

Equating the above 0 gives Aw = Aw. In other words, w needs to be an
eigenvector, and A the corresponding eigenvalue.
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Proof of Theorem 1 (Cont.)

Now it remains to check which eigenvector gives the largest variance.
Observe that:

var(S) = w'Aw
ww
A

In other words, when we choose eigenvector w as our solution, its quality
is exactly the eigenvalue X. Hence, the eigenvector with the maximum
eigenvalue is what we are looking for. O

v
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Recall our earlier definitions. P is a set of n d-dimensional points with
zero mean on all dimensions. Let w be a unit vector. Project P onto w
to obtain a set of 1d values: S = {p-w | p € P}. Define the quality of
w be var(S).

The second eigenvector output by PCA has the highest quality, among all
the vectors w orthogonal to the first eigenvector v;.
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Proof of Theorem 2

Let A be the covariance matrix of P. As shown in the proof of
Theorem 1, we proved that

var(S) = w'Aw.

Hence, we want to maximize the above subject to the constraints
w'w=1landw'wy; =0.

Now we apply the method of Lagrange multipliers to find the maximum.
Introduce real values A and ¢, and now consider the objective function

f(w,\,¢) = w'Aw — /\(WTW -1)-— ow'vy =

g
ow

= 2Aw —2)\w — ¢w»y.
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Proof of Theorem 2 (Cont.)

The optimal w needs to satisfy % =0, namely:
2Aw — 2w — ¢vy = 0. (1)

Next we prove that ¢ must be 0. To see this, multiplying both sides of
(1) by i 7, we get:

2nTAW — 22w Tw+ v vy = 0. (2)
We know that vy 'w = 0, and vy "vy = 1. Furthermore,

v Aw=w'ATvi =w Ay, =w' (An)) =w'v; = 0.

Hence, from (2), we get ¢ = 0.
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Proof of Theorem 2 (Cont.)

Therefore, from (1), we know:
2Aw —2\w = 0

namely, w must also be an eigenvector.

From the proof of Theorem 1, we know that var(S) equals the eigenvalue
corresponding to w. This thus indicates that w is the eigenvector of A
with the second largest eigenvalue. O

v
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