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We will discuss page ranks on a directed graph, which reflect vertices’

“importance”. We will also take the opportunity to discuss the theory of

random walks (a.k.a. Markov chains), which generalize the stochastic

process underlying page ranks.
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Internet as a Graph

Represent WWW as a directed graph G = (V ,E ):

Each webpage is a node in V .

E has an edge from v1 to v2 if page v1 has a link to page v2.

v1

v2 v3

v4 v5

If a page v has no links, add a link to itself.
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Random Surfing

1 u = the page we are currently at (initially, u = an arbitrary page).

2 Toss a coin with a “heads” probability α.

3 If the coin comes up heads, follow a random link in u and set u to
the new page

4 Otherwise (tails), set u to a random page in G – call this a reset.

5 Repeat from Step 1.
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Page Rank

A page’s page rank is the probability of being the t-th page visited
when t =∞.

The probability is not affected by the choice of the first page (this will

become clear later).
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Access Probability

Example:

v1

v2 v3

v4 v5

Assume that α = 4/5 and the 1st page chosen is v1. What is the
probability of the event “2nd page = v3”? This happens if one of
the following takes place:

The coin comes up heads and we follow the link from v1 to
v3; probability = 4

5 ·
1
2 = 2

5 .

Tails and the reset picks v3; probability = 1
5 ·

1
5 = 1

25 .

Hence, the probability is 1
25 + 2

5 = 11
25 .
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Access Probability

Example (cont.):

v1

v2 v3

v4 v5

What is the probability of “3rd page = v4”? This happens if one
of the following takes place:

2nd page = v3, the coin comes up heads, and we follow the
link from v3 to v4; probability = 11

25 ·
4
5 ·

1
2 = 22

125 .

Tails and the reset picks v4; probability = 1
25 .

Hence, the probability is 22
125 + 1

25 = 27
125 .
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Access Probability

Given a vertex v ∈ V and an integer t ≥ 1, define p(v , t) to be the
probability of “v = the t-th page”. Then:

p(v , t + 1) =
1− α
|V |

+ α ·
∑

u∈in(v)

p(u, t)

outdeg(u)

where

in(v) is the set of in-neighbors of v ;

outdeg(v) is the out-degree of v .
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Access Probability ⇒ Page Rank

When t →∞, we always have:

p(v , t + 1) = p(v , t)

for all v ∈ V . The value of p(v , t) at that moment is the page rank of

v .
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Next, we will discuss how page ranks are related to the well-
established theory of random walks. We will see that page ranks
form an eigenvector of a matrix that depends only on G and α.
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An n × n matrix M is called a stochastic matrix if:

every value in M is non-negative;

the values of each column sum up to 1.
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Random Walk

Every stochastic matrix M defines a random walk:

Define a directed graph Gmarkov with nodes v1, ..., vn. For every
non-zero entry M[j , i ] of M (1 ≤ i , j ≤ n), Gmarkov has an edge from
vi to vj .

Initially, pick an arbitrary vertex as the first stop.

Inductively, assuming that vi is the t-th stop (t ≥ 1), move to an
out-neighbor vj with probability M[j , i ]. That neighbor is the
(t + 1)-th stop.

The above stochastic process is also called a Markov chain.
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A random walk is irreducible if the nodes of Gmarkov are mutually
reachable.

A random walk is aperiodic if the following is true: every vertex in
Gmarkov has a non-zero probability of being visited at every t ≥ t0
for some sufficiently large t0.

An n × 1 vector P is a probability vector if:

each component in P is a value between 0 and 1;

all components of P sum up to 1.
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Theorem: Let M be a stochastic matrix describing an irreducible
and aperiodic random walk. Then, there is a unique probability
vector P satisfying P = MP.

The proof is non-trivial and omitted.

P is the stationary probability vector of the random walk. Note
that it is an eigenvector of M corresponding to the eigenvalue 1.
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Random Surfing = Random Walk

The random surfing process we saw earlier is a random walk. Given vi as
the current stop, we jump to vj with probability

1−α
n if vi has no link to vj ;

1−α
n + α

outdeg(vi )
otherwise.

Define M as an n × n matrix with M[j , i ] set to the above probability.

Think: Why is the random walk irreducible and aperiodic?
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Random Surfing = Random Walk

As before, let p(vi , t) (1 ≤ i ≤ n) be the probability of “vi = the t-th
stop”. Define

P(t) =


p(v1, t)
p(v2, t)

...
p(vn, t)



From Slide 8, we know:

P(t + 1) = M · P(t).
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Random Surfing = Random Walk

When P(t + 1) = P(t), P(t) is the solution of P in

P = MP.

By the theorem in Slide 14, P uniquely exists, which proves the
uniqueness of page ranks.
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Power Method

We can calculate P with the following algorithm (known as the power
method):

1. P(1)← (1, 0, ..., 0)T and t ← 1
2. for t = 2, 3, ... do
3. P(t + 1) = M · P(t)

In practice, terminate the algorithm at some reasonably large t (e.g.,

100). Next, we will show that the algorithm converges quickly.
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Define ri (1 ≤ i ≤ n) as the page rank of vi . We will consider the
following error metric:

Err(t) =
n∑

i=1

|p(vi , t)− ri |. (1)

We will prove:

Lemma: Err(t) ≤ α · Err(t − 1).

This implies Err(t) ≤ αt · Err(0) and, hence, Err(t) ≤ ε after
t = O(log 1

ε ) rounds.
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Proof

By definition of stationary vector, we know that for each i ∈ [1, n],

ri =
1− α
n

+ α ·
∑

in-neighbor vj of vi

rj
outdeg(vj)

.

By how the power method runs, we know:

p(vi , t) =
1− α
n

+ α ·
∑

in-neighbor vj of vi

p(vj , t − 1)

outdeg(vj)
.

The above equations yield

|p(vi , t)− ri | ≤ α ·
∑

in-neighbor vj of vi

|p(vj , t − 1)− rj |
outdeg(vj)

. (2)
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Proof

By combining (1) and (2), we have:

Err(t) ≤ α ·
∑
vi

∑
in-neighbor vj of vi

|p(vj , t − 1)− rj |
outdeg(vj)

.

Observe that
|p(vj ,t−1)−rj |
outdeg(vj )

is added exactly outdeg(vj) times on the right

hand side. Therefore:

Err(t) ≤ α ·
∑
vi

|p(vi , t − 1)− ri | = α · Err(t − 1)

which completes the proof.
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