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(Classification (Re—defined))

Let Ay, ..., Ay be d attributes.

Define the instance space as X = dom(A;) x dom(A;) x ... x dom(Ay)
where dom(A;) represents the set of possible values on A;.

Define the label space as ) = {1, 2, ..., k} (the elements in ) are called
the class labels).

Each instance-label pair (a.k.a. object) is a pair (x,y) in X x V.

@ x is a vector; we use x[A;] to represent the vector’s value on A;
(1<i<d).

Denote by D a probabilistic distribution over X x ).
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(Classification (Re—defined))

Goal: Given an object (x, y) drawn from D, we want to predict its
label y from its attribute values x[A1], ..., x[Ad].

We will find a function
h: X =Y

which is referred to as a classifier (sometimes also called a hypothesis).
Given an instance x, we predict its label as h(x).

The error of h on D — denoted as errp(h) — is defined as:

errp(h) = Pri,)~plh(x) # y]

namely, if we draw an object (x, y) according to D, what is the
probability that h mis-predicts the label?
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Classification

Ideally, we want to find an h to minimize errp(h), but this in general is
not possible without the precise information about D.

Instead, We would like to learn a classifier h with small errp(h) from a
training set S where each object is drawn independently from D.
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(Classification - Redefined)

In training, we are given a sample set S of D, where each object in S is
drawn independently according to D. We refer to S as the training set.

We would like to learn our classifier h from S.

The key difference from what we have discussed before is that
the number k of classes can be anything (in binary classifications,
k = 2). We will refer to this version of classification as multiclass
classification.
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Think: How would you adapt the decision tree method and Bayes’
method to multiclass classification?

Next, assuming that every dom(A;) (1 < i < d) is the real domain R, we
will extend linear classifiers and Perceptron to multiclass classification.
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(Linear Classification — Generalized)

A generalized linear classifiers is defined by k d-dimensional vectors
W1, Wo, ..., wy. Given a point p in RY, the classifier predicts its class
label as
argmaxw; - p.
i€[1,k]

Namely, it returns the label i € [1, k] that gives the largest w; - p.

Tie breaking: In the special case where two distinct 7,/ € [1,d]
achieve the maximum (i.e., w; - p = w; - p), we can break the
tie using some consistent policy, e.g., predicting the label as the
smaller between j and j.
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Points p1, p2, and ps will be classified as label 1, 2, and 3, respectively.

Think: What do the three red rays stand for?
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A training set S is linearly separable if there exist wy, ..., wy that
@ correctly classify all the points in S;
@ for every point p € S with label ¢, wy - p > w, - p for every z # /.

The set {wy, ..., wy} is said to separate S.

Example:

The dots have label 1, squares label 2, and crosses label 3.
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Next we will discuss an algorithm that extends the Perceptron algo-
rithm to find a set of weight vectors to separate S, provided that
S is linearly separable. We will refer to the algorithm as multiclass

Perceptron.
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(Multiclass Perceptron)

1.
2.

3.
4.

w; < 0 forall i € [1, k]
while there is a violation point pe S
/* namely, p mis-classified by {w1,..., w,} */
{ — the real label of p
z — the predicted label of p
/* £ # z since p is a violation point */
Wy <— Wy +p
W, w,—p

When k = 2, the above algorithm degenerates into (the conven-
tional) Perceptron. Can you see why?
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Let W be a set of weight vectors {wy, ..., wi} that separates S.

Given a point p € S with label ¢, let us define its margin under W as
margin(p | W) = min We'p—W:'P

A0 [ —k ’
‘ 22;:1 |wi|?

The margin of p under W is a way to measure how “confidently”
W gives p the class label ¢. Think: why?

The margin of W equals the smallest margin of all points under W:

margin(W) = mig margin(p | W).
pPE
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Let W* be a set of weight vectors that (i) separates S, and (ii) has the
largest margin.

Define
v = margin(W?*).

As before, define the radius of S as

R =ma .
peglpl
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Theorem: Multiclass Perceptron stops after processing at most
R? /~4? violation points.

This is the general version of the theorem we have already learned on
(the old) Perceptron.
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Let M be a d x k matrix. We use M[i,j] to denote the element at the
i-th row and j-th column (1 </ <d,1 <j<k).

The Frobenius norm of M, denoted as |M|g, is:

Here is an easy way to appreciate the above norm: think of M as a
(dk)-dimensional vector by concatenating all its rows; then |M|g is
simply the length of that vector.

Given two d x k matrices My, M,, the (matrix) dot product operation
gives a real value that equals:

1<i<d,1<j<k
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Proof of the theorem on Slide 14: The algorithm maintains a set of
vectors {w1, ..., wi}. Each w; (1 <i<k)isalxd vector.

Henceforth, we will regard a set of vectors {wy,...,wi} asa k x d
matrix W, where the i-th (i € [, k]) row of W is w;.

Define t as the number of violation points.

The algorithm performs t adjustments to W. Denote by W, (j € [1, t])
the W after the j-th adjustment. Define specially Wy the d x k matrix
with all 0’s.

Denote by W* the k x d matrix that corresponds to an optimal set of
weight vectors {wy', ..., w; } whose margin is ~.
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Claim 1: W*- W, > 2ty - [W*|.

Proof: Consider any j € [1,t]. Let p be the violation point that caused
the j-th adjustment. Let ¢ be the real label of p, and z the label
predicted by W;_;.
Define A as the k x d matrix such that

@ The (-th row of Ais p (a 1 x d vector).

@ The z-th row of Ais (—1) - p.

@ All the other rows are 0.

Hence, W; = W;_; + A, which means:
W*. W, =Ww*. W,_; + W*- A

We will prove W* - A > /2y - W=
Claim 1.

£, which will complete the proof of
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WA = w/-p—w)-p

v

7/2IW* |2

V2y- W,
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Claim 2: |W;|2 < 2tR2.

Proof: Consider any j € [1,t]. Let p be the violation point that caused
the j-th adjustment. Let / be the real label of p, and z the label
predicted by W;_;. Suppose that W;_1 = {uy, ..., ux}.

Since p is a violation point, we must have:
u-p<u;-p

Denote by v, the new vector for class label ¢ after the update, and
similarly by v, the new vector for class label z after the update. By how
the algorithm runs, we have:

Vg = ug+p

V; = u;—p
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We have

(ug + p)* + (u; — p)?

= |ul + |u P +2|pf +2(u; - p— u; - p)

<
~
N
+
<
N
)
|

(as p is a violation point) < |ug|* + |u|? + 2|p|?
< uef + Juf? + 2R
Observe that
(WilE = IWiealt = (vel® + [vzl?) = (lue® + |u2?)

We therefore have
Wi — W2 < 2R,

This completes the proof of the claim. O
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Claim 3: W* - W, < |W*|g - |W|F.

Proof: The claim follows immediately from the following general result:

Let u and v be two vectors of the same dimensionality; it always
holds that u - v < |ul|v].

The above is true because u - v = |ul|v| cos 6 where 0 is the angle
between the two vectors. OJ
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By combining Claims 1-3, we have:
V2ty|W* e W™ - [Wilp < [W¥|E - V2tR

<
=t < R*/y2

This completes the proof of the theorem.
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