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Classification (Re-defined)

Let A1, ...,Ad be d attributes.

Define the instance space as X = dom(A1)× dom(A2)× ...× dom(Ad)
where dom(Ai ) represents the set of possible values on Ai .

Define the label space as Y = {1, 2, ..., k} (the elements in Y are called
the class labels).

Each instance-label pair (a.k.a. object) is a pair (x , y) in X × Y.

x is a vector; we use x [Ai ] to represent the vector’s value on Ai

(1 ≤ i ≤ d).

Denote by D a probabilistic distribution over X × Y.
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Classification (Re-defined)

Goal: Given an object (x , y) drawn from D, we want to predict its
label y from its attribute values x [A1], ..., x [Ad ].

We will find a function
h : X → Y

which is referred to as a classifier (sometimes also called a hypothesis).
Given an instance x , we predict its label as h(x).

The error of h on D — denoted as errD(h) — is defined as:

errD(h) = Pr (x,y)∼D[h(x) 6= y ]

namely, if we draw an object (x , y) according to D, what is the
probability that h mis-predicts the label?
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Classification

Ideally, we want to find an h to minimize errD(h), but this in general is
not possible without the precise information about D.

Instead, We would like to learn a classifier h with small errD(h) from a
training set S where each object is drawn independently from D.
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Classification – Redefined

In training, we are given a sample set S of D, where each object in S is
drawn independently according to D. We refer to S as the training set.

We would like to learn our classifier h from S .

The key difference from what we have discussed before is that
the number k of classes can be anything (in binary classifications,
k = 2). We will refer to this version of classification as multiclass
classification.
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Think: How would you adapt the decision tree method and Bayes’
method to multiclass classification?

Next, assuming that every dom(Ai ) (1 ≤ i ≤ d) is the real domain R, we

will extend linear classifiers and Perceptron to multiclass classification.
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Linear Classification – Generalized

A generalized linear classifiers is defined by k d-dimensional vectors
w 1,w 2, ...,w k . Given a point p in Rd , the classifier predicts its class
label as

arg max
i∈[1,k]

w i · p.

Namely, it returns the label i ∈ [1, k] that gives the largest w i · p.

Tie breaking: In the special case where two distinct i , j ∈ [1, d ]
achieve the maximum (i.e., w i · p = w j · p), we can break the
tie using some consistent policy, e.g., predicting the label as the
smaller between i and j .
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Example

~w1
~w2

~w3

p1

p2

p3

Points p1, p2, and p3 will be classified as label 1, 2, and 3, respectively.

Think: What do the three red rays stand for?
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A training set S is linearly separable if there exist w 1, ...,wd that

correctly classify all the points in S ;

for every point p ∈ S with label `, w ` · p > w z · p for every z 6= `.

The set {w 1, ...,wd} is said to separate S .

Example:

~w1
~w2

~w3

The dots have label 1, squares label 2, and crosses label 3.
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Next we will discuss an algorithm that extends the Perceptron algo-
rithm to find a set of weight vectors to separate S , provided that
S is linearly separable. We will refer to the algorithm as multiclass
Perceptron.

Yufei Tao Multiclass Classification



11/22

Multiclass Perceptron

1. w i ← 0 for all i ∈ [1, k]
2. while there is a violation point p ∈ S

/* namely, p mis-classified by {w 1, ...,w k} */
3. `→ the real label of p
4. z → the predicted label of p

/* ` 6= z since p is a violation point */
5. w ` ← w ` + p
6. w z ← w z − p

When k = 2, the above algorithm degenerates into (the conven-
tional) Perceptron. Can you see why?
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“Margin”

Let W be a set of weight vectors {w 1, ...,w k} that separates S .

Given a point p ∈ S with label `, let us define its margin under W as

margin(p |W ) = min
z 6=`

w ` · p −w z · p√
2
∑k

i=1 |w i |2
.

The margin of p under W is a way to measure how “confidently”
W gives p the class label `. Think: why?

The margin of W equals the smallest margin of all points under W :

margin(W ) = min
p∈S

margin(p |W ).
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“Margin”

Let W ∗ be a set of weight vectors that (i) separates S , and (ii) has the
largest margin.

Define
γ = margin(W ∗).

As before, define the radius of S as

R = max
p∈S
|p|.
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Theorem: Multiclass Perceptron stops after processing at most
R2/γ2 violation points.

This is the general version of the theorem we have already learned on
(the old) Perceptron.
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Let M be a d × k matrix. We use M[i , j ] to denote the element at the
i-th row and j-th column (1 ≤ i ≤ d , 1 ≤ j ≤ k).

The Frobenius norm of M, denoted as |M|F , is:

|M|F =

√∑
i,j

M[i , j ]2.

Here is an easy way to appreciate the above norm: think of M as a
(dk)-dimensional vector by concatenating all its rows; then |M|F is
simply the length of that vector.

Given two d × k matrices M1,M2, the (matrix) dot product operation
gives a real value that equals:∑

1≤i≤d,1≤j≤k

M1[i , j ] ·M2[i , j ].
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Proof of the theorem on Slide 14: The algorithm maintains a set of
vectors {w 1, ...,w k}. Each w i (1 ≤ i ≤ k) is a 1× d vector.

Henceforth, we will regard a set of vectors {w 1, ...,w k} as a k × d
matrix W , where the i-th (i ∈ [1, k]) row of W is w i .

Define t as the number of violation points.

The algorithm performs t adjustments to W . Denote by Wj (j ∈ [1, t])
the W after the j-th adjustment. Define specially W0 the d × k matrix
with all 0’s.

Denote by W ∗ the k × d matrix that corresponds to an optimal set of

weight vectors {w∗1 , ...,w∗k } whose margin is γ.
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Claim 1: W ∗ ·Wt ≥
√

2tγ · |W ∗|F .

Proof: Consider any j ∈ [1, t]. Let p be the violation point that caused
the j-th adjustment. Let ` be the real label of p, and z the label
predicted by Wj−1.

Define ∆ as the k × d matrix such that

The `-th row of ∆ is p (a 1× d vector).

The z-th row of ∆ is (−1) · p.

All the other rows are 0.

Hence, Wj = Wj−1 + ∆, which means:

W ∗ ·Wj = W ∗ ·Wj−1 + W ∗ ·∆.

We will prove W ∗ ·∆ ≥
√

2γ · |W ∗|F , which will complete the proof of

Claim 1.
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W ∗ ·∆ = w∗
` · p −w∗

z · p

≥ γ

√√√√2
k∑

i=1

|w∗i |2

= γ
√

2|W ∗|2F
=
√

2γ · |W ∗|F .
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Claim 2: |Wt |2F ≤ 2tR2.

Proof: Consider any j ∈ [1, t]. Let p be the violation point that caused
the j-th adjustment. Let ` be the real label of p, and z the label
predicted by Wj−1. Suppose that Wj−1 = {u1, ...,uk}.

Since p is a violation point, we must have:

u` · p ≤ uz · p

Denote by v ` the new vector for class label ` after the update, and
similarly by v z the new vector for class label z after the update. By how
the algorithm runs, we have:

v ` = u` + p
v z = uz − p
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We have

|v `|2 + |v z |2 = (u` + p)2 + (uz − p)2

= |u`|2 + |uz |2 + 2|p|2 + 2(u` · p − uz · p)

(as p is a violation point) ≤ |u`|2 + |uz |2 + 2|p|2

≤ |u`|2 + |uz |2 + 2R2.

Observe that

|Wj |2F − |Wj−1|2F = (|v `|2 + |v z |2)− (|u`|2 + |uz |2)

We therefore have
|Wj |2F − |Wj−1|2F ≤ 2R2.

This completes the proof of the claim.
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Claim 3: W ∗ ·Wt ≤ |W ∗|F · |Wt |F .

Proof: The claim follows immediately from the following general result:

Let u and v be two vectors of the same dimensionality; it always
holds that u · v ≤ |u||v |.

The above is true because u · v = |u||v | cos θ where θ is the angle
between the two vectors.
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By combining Claims 1-3, we have:

√
2tγ|W ∗|F ≤ |W ∗|F · |Wt |F ≤ |W ∗|F ·

√
2tR

⇒ t ≤ R2/γ2.

This completes the proof of the theorem.
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