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Classification

Let Ay, ..., Aq be d attributes, where A; (i € [1,d]) has domain
dom(A;) = R.

Instance space X = dom(A;) x dom(Az) x ... x dom(Ay) = R¥.
Label space ) = {-1,1}.
Each instance-label pair (a.k.a. object) is a pair (x,y) in X x V.

@ x is a vector; we use x[A;] to represent the vector's value on A;
(1<i<d).

Denote by D a probabilistic distribution over X x ).
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Classification

Goal: Given an object (x, y) drawn from D, we want to predict its
label y from its attribute values x[A], ..., x[Aq4].

A classifier is a function
h: X —=).

Denote by # a collection of classifiers.

The error of h on D (i.e., generalization error) is defined as:

errp(h) = Pri,)~plh(x) # y].

We want to learn a classifier h € H with small errp(h) from a
training set S where each object is drawn independently from D.
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We want to learn a classifier h € H with small errp(h) from a
training set S where each object is drawn independently from D.

The error of h on S (i.e., empirical error) is defined as:

(x,y) €S |h(x)#y
S| '

errs(h) =
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Let P be a set of points in RY. Given a classifier h € 7, we define:
Py={pe€ P|h(p)=1}

namely, the set of points in P that h classifies as 1.

H shatters P if, for any subset P’ C P, there exists a classifier
h € H satisfying P’ = Py,
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Example: An extended linear classifier h is described by a d-
dimensional weight vector w and a threshold 7. Given an instance
x €RY, h(x) =1if w-x > 7, or —1 otherwise. Let H be the set

of all extended linear classifiers.

In 2D space, H shatters the set P of points shown below.
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Example (cont.): Can you find 4 points in R? that can be shat-
tered by H?

The answer is no. Can you prove this?
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Let P be a subset of X. The VC-dimension of H on P is the size
of the largest subset P C P that can be shattered by #.

If the VC-dimension is \, we write VC-dim(P,H) = .
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(VC Dimension of Extended Linear Classifiers)

Theorem: Let H be the set of extended linear classifiers.
VC-dim(RY, H) = d + 1.

The proof is outside the syllabus.

Example: We have seen earlier that when d = 2, H can shatter
at least one set of 3 points but cannot shatter any set of 4 points.
Hence, VC-dim(R?, H) = 3.

Think: Now consider H as the set of linear classifiers (where
the threshold 7 is fixed to 0). What can you say about
VC-dim(RY, H)?
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(VC—Based Generalization Theorem)

The support set of D is the set of points in RY that have a positive
probability to be drawn according to D.

Theorem: Let P be the support set of D and set A =
VC-dim(P,H). Fix a value § satisfying 0 < ¢ < 1. It holds
with probability at least 1 — § that

8In% 48X In 28l
errp(h)<err5(h)+\/ n5+|5| i

for every h € H, where S is the set of training points.

The proof is outside the syllabus.
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The new generalization theorem places no constraints on the size of .

Think: What implications can you draw about the Perceptron
algorithm?
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If a set H of classifiers is “more powerful’ — namely, having a
greater VC dimension — it is more difficult to learn because a
larger training set is needed.

For the set H of (extended) linear classifiers, the training set size needs
to be Q(d) to ensure a small generalization error. This becomes a
problem when d is large. In fact, in some situations we may even want to
work with d = oco.

Next, we will introduce another generalization theorem for the linear
classification problem.
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Recall:

Linear classifier: A function h : X — ) where h is defined by a
d-dimensional weight vector w such that

@ h(x)=1ifx-w>0;

@ h(x) = —1 otherwise.

S is linearly separable if there is a d-dimensional vector w such
that for each p € S:

@ w-p>0if p has label 1;
@ w-p<O0if phas label —1.

The linear classifier that w defines is said to separate S.

13/16

Y Tao More Generalization Theorems



Let h be a linear classifier defined by a d-dimensional vector w.
We say that h is canonical if for every point p € S:

@ w-p>1if phaslabel 1
@ w-p < —1if phas label —1;

and the equality holds on at least one point in S.

Think: If h separates S, it always has a canonical form. Why?
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(Margin—Based Generalization Theorem)

Theorem: Let 7 be the set of linear classifiers. Suppose that
the training set S is linearly separable. Fix a value J satisfying
0 < 0 < 1. It holds with probability at least 1 — § that,

errp(h) <

4R - |w| \/In§+|n[log2(R|w|)]
¥ I

for every canonical h € #H, where w is the d-dimensional vector
defining h and

R =ma .
rpe;<|p|

The proof is outside the syllabus.

The theorem does not depend on the dimensionality d.
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(Margin—Based Generalization Theorem)

Why is the theorem “margin-based”?
The margin of the separation plane defined by w equals 1/|w]|.

When the training set S is linearly separable, we should find a
separation plane with the largest margin.
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