
1/22

Linear Classification: The Kernel Method

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Y Tao Linear Classification: The Kernel Method



2/22

Recall the core problem of linear classification:

Let P be a set of points in Rd , each of which carries a label 1 or
−1. The goal of the linear classification problem is to determine
whether there is a d-dimensional plane

x1 · c1 + x2 · c2 + ...+ xd · cd = 0

which separates the points in P of the two labels.

If the plane exists, then P is said to be linearly separable. Otherwise, P

is linearly non-separable.

Y Tao Linear Classification: The Kernel Method



3/22

Why the Separable Case Is Important?

So far, we have not paid much attention to non-separable datasets. All
the techniques we have learned are designed for the scenario where P is
linearly separable.

This lecture will give a good reason for this. We will learn a technique —
called the kernel method — that maps a dataset into another space of
higher dimensionality. By applying the method appropriately, we can
always guarantee linear separability.

Y Tao Linear Classification: The Kernel Method



4/22

Motivation

Consider the non-separable circle dataset P below, where a point p has
label 1 if (p[1])2 + (p[2])2 ≤ 1, or −1 otherwise.

Let us map each point p ∈ P
to a point p′ in another space
where p′[1] = (p[1])2 and p′[2] =
(p[2])2. This gives a new dataset
P ′.

Clearly the points in P ′ of the two
labels are separated by a linear
plane p′[1] + p′[2] = 1.

Y Tao Linear Classification: The Kernel Method



5/22

Motivation

The left figure below is another non-separable dataset P (known as the
XOR dataset).

(0, 0)

(0, 1) (1, 1)

(1, 0) (0, 0, 0)

(0, 1, 0)

(1, 1, 1)

(1, 0, 0)

x

y

z

The right figure shows the 4 points after the transformation from a 2D

point (x , y) to a 3D point (x , y , xy). The new dataset is linearly

separable.

Y Tao Linear Classification: The Kernel Method



6/22

Increasing the Dimensionality Guarantees Linearly Separability

Theorem: Let P be an arbitrary set of n points in 1D space, each
of which has label 1 or −1. If we map each point x ∈ P to an
n-dimensional point (1, x , x2, ..., xn−1), the set of points obtained
is always linearly separable.

Think: How do you apply the result in 2D? (Hint: just take the
x-coordinates; if there are duplicates, rotate the space).

We will prove the theorem in the next two slides.

Y Tao Linear Classification: The Kernel Method



7/22

Increasing the Dimensionality Guarantees Linearly Separability

Proof: Denote the points in P as p1, p2, ..., pn in ascending order. We
will consider that n is an odd number (the opposite case left to you).
Without loss of generality, assume that pi has label −1 when i ∈ [1, n] is
an odd integer, and 1 otherwise.

Here, the labels of the points are “interleaving” (i.e.,
−1, 1,−1, 1, ...). After you have understood the proof, think how
to extend it a non-interleaving P.

The following shows an example where n = 5, and white and black points
have labels −1 and 1, respectively.

p1 p2 p3 p4 p5

Y Tao Linear Classification: The Kernel Method



8/22

Increasing the Dimensionality Guarantees Linearly Separability

Proof (cont.): Between pi and pi+1 (1 ≤ i ≤ n − 1), pick an arbitrary
point qi . The figure below shows an example:

p1 p2 p3 p4 p5q1 q2 q3 q4

Now consider the following polynomial function

f (x) = −(x − q1)(x − q2)...(x − qn−1).

It must hold that: for every label-(−1) point p, f (p) < 0, while for every
label-1 point, f (p) > 0.

The figure below shows what happens when n = 5:

p1 p2 p3 p4 p5q1 q2 q3 q4

Y Tao Linear Classification: The Kernel Method



9/22

Increasing the Dimensionality Guarantees Linearly Separability

Proof (cont.): Function f (x) can be expanded into the following form:

f (x) = c0 + c1x + c2x
2 + ...+ cn−1x

n−1.

Therefore, if we convert each point x ∈ P to a point (1, x , x2, ..., xn−1),
the resulting set of n-dimensional points must be separable by a plane
passing the origin (of the n-dimensional space).

Y Tao Linear Classification: The Kernel Method



10/22

Issue: Efficiency

The conversion explained in the proof produces a new space of
dimensionality d ′ = n. When d ′ is large, computation in the converted
space can be very expensive (in fact, even enumerating all the coordinates
of point takes Θ(d ′) time). Is it possible improve the efficiency?

This is where kernel functions come into the picture.

Y Tao Linear Classification: The Kernel Method



11/22

Kernel Function

A kernel function K is a function from Rd × Rd to R with the
following property: there is a mapping φ : Rd → Rd′ such that,
given any two points p, q ∈ Rd , K (p, q) equals the dot product of
φ(p) and φ(q).

We will refer to the space Rd′ (where φ(p) is) as the kernel space.

We will see two common kernel functions next. Henceforth, a point
p = (p[1], p[2], ..., p[d ]) in Rd will interchangeably be regarded as a
vector p. For example, the dot product of two points p, q — written as
p · q — equals

∑d
i=1 p[i ]q[i ].

Y Tao Linear Classification: The Kernel Method



12/22

Polynomial Kernel

Let p and q be two points in Rd . A polynomial kernel has the form:

K (p,q) = (p · q + 1)c

for some integer degree c ≥ 1.

Y Tao Linear Classification: The Kernel Method



13/22

Example

Consider that d = 2 and c = 2. We can expand the Kernel function as:

K (p,q) = (p · q + 1)2 = (p[1]q[1] + p[2]q[2] + 1)2

= 1 + (p[1])2(q[1])2 + (p[2])2(q[2])2 +

2(p[1]p[2])(q[1]q[2]) + 2p[1]q[1] + 2p[2]q[2].

We can regard the above as the dot product of φ(p) and φ(q), where
φ(p) is a 6 dimensional point:

φ(p) = (1, p[1]2, p[2]2,
√

2p[1]p[2],
√

2p[1],
√

2p[2]).

In other words, the converted space has a dimensionality of d ′ = 6.

In general, a polynomial kernel with degree c converts d-
dimensional space to

(
d+c
c

)
dimensional space.

Y Tao Linear Classification: The Kernel Method



14/22

Gaussian Kernel (a.k.a. RBF Kernel)

Let p and q be two points in Rd . A Gaussian kernel has the form:

K (p,q) = exp

(
−dist(p,q)2

2σ2

)
for a real value σ > 0 called the bandwidth. Note that dist(p,q) is the
Euclidean distance between p and q, namely,
dist(p,q)2 =

∑d
i=1(p[i ]− q[i ])2.

In general, a Gaussian kernel converts d-dimensional space to an-
other space with infinite dimensionality! We will illustrate this in
the next slide for d = 1.

Y Tao Linear Classification: The Kernel Method



15/22

Gaussian Kernel (a.k.a. RBF Kernel)

We know from Taylor expansion ex = 1 + x + x2

2! + x3

3! + x4

4! + ...
When d = 1, dist(p, q)2 = p2 − 2pq + q2. Hence:

exp

(
−dist(p, q)2

2σ2

)
= exp

(
−p2 − 2pq + q2

2σ2

)
=

exp

(
−p2 + q2

2σ2

)
exp(

pq

σ2
) =

1

e
p2

2σ2

1

e
q2

2σ2

exp(
pq

σ2
)

=
1

e
p2

2σ2

1

e
q2

2σ2

(
1 +

pq

σ2
+

(p/σ)2(q/σ)2

2!
+

(p/σ)3(q/σ)3

3!
+ ...

)
It is now clear that φ(p) has the following coordinates:(

1

e
p2

2σ2

,
p/σ

e
p2

2σ2

,
(p/σ)2

√
2! · e

p2

2σ2

,
(p/σ)3

√
3! · e

p2

2σ2

, ...

)

Y Tao Linear Classification: The Kernel Method



16/22

Gaussian Kernel (a.k.a. RBF Kernel)

Theorem: Regardless of the choice of σ, a Gaussian kernel is
capable of separating any finite set of points.

The proof will be left as an exercise (with hints).

Y Tao Linear Classification: The Kernel Method



17/22

Finding a Separation Plane in the Converted Space

A Kernel function K (., .) allows us to convert the original d-dimensional
dataset P into another d ′-dimensional dataset P ′ = {φ(p) | p ∈ P}
where typically d ′ � d . But how do we find a separation plane in the
kernel space Rd′?

One (naive) idea is to materialize P ′, but this requires figuring out the
details of φ(.). As shown earlier, this is either cumbersome (e.g.,
polynomial kernel) or impossible (e.g., Gaussian kernel).

It turns out that we can achieve the purpose without working in the
d ′-dimensional space at all. Our weapon is, once again, Perceptron!

Y Tao Linear Classification: The Kernel Method



18/22

Recall:

Perceptron

The algorithm starts with w = (0, 0, ..., 0), and then runs in iterations.

In each iteration, it checks whether any point in p ∈ P violates our
requirement according to w . If so, the algorithm adjusts w as follows:

If p has label 1, then w ← w + p.

If p has label −1, then w ← w − p.

The algorithm finishes if the iteration finds all points of P on the right

side of the plane.

Y Tao Linear Classification: The Kernel Method



19/22

In the converted space Rd′ , it should be modified as:

Perceptron

The algorithm starts with w = (0, 0, ..., 0︸ ︷︷ ︸
d′

), and then runs in iterations.

In each iteration, it simply checks whether any point in φ(p) ∈ P ′

violates our requirement according to w . If so, the algorithm adjusts w
as follows:

If φ(p) has label 1, then w ← w + φ(p).

If φ(p) has label −1, then w ← w − φ(p).

The algorithm finishes if the iteration finds all points of P ′ on the right
side of the plane.

Next we will show how to implement the algorithm using the Kernel
function K (., .).

Y Tao Linear Classification: The Kernel Method



20/22

Perceptron

For point p ∈ P, denote by tp the number of times that p has been used
to adjust w (tp = 0 if p has never been used before). Let P−1 (or P1) be
the set of label-(−1) (or label-1, resp.) points in P.

Hence, the current w is:

w =
∑
p∈P1

tpφ(p)−
∑

p∈P−1

tpφ(p).

Y Tao Linear Classification: The Kernel Method



21/22

Perceptron

The key step to implement is this: given an arbitrary point q ∈ Rd , we
want to compute the dot product between w and φ(q) in the
d ′-dimensional space. Using the Kernel function K (., .), we have:

w · φ(q) =

∑
p∈P1

tpφ(p)−
∑

p∈P−1

tpφ(p)

φ(q)

=

∑
p∈P1

tp(φ(p) · φ(q))

−
 ∑

p∈P−1

tp(φ(p) · φ(q))


=

∑
p∈P1

tp · K (p, q)−
∑

p∈P−1

tp · K (p, q).

Therefore, by maintaining tp for every p ∈ P, we never need to compute
any dot-products in the converted d ′-dimensional space.

Y Tao Linear Classification: The Kernel Method



22/22

We finish this lecture with a question for you:

Think: How to apply the margin-based generalization theorem on
the set P ′ of points obtained by the kernel method?

Y Tao Linear Classification: The Kernel Method


