
1/29

Classification, Decision Trees, and a
Generalization Theorem

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Y Tao CMSC5724, CUHK

2/29

In classification, we are given a training set containing objects of two
classes, and want to learn a classifier to predict the class of an object
outside the training set. This course will cover several techniques to
perform classification effectively. We will start with one such technique:
the decision tree method.

Y Tao CMSC5724, CUHK

3/29

Classification

Let A1, ...,Ad be d attributes.

Define the instance space as X = dom(A1)× dom(A2)× ...× dom(Ad)
where dom(Ai) represents the set of possible values on Ai .

Define the label space as Y = {−1, 1} (the elements in Y are called the
class labels).

Each instance-label pair (a.k.a. object) is a pair (x , y) in X × Y.

x is a vector; we use x [Ai] to represent the vector’s value on Ai

(1 ≤ i ≤ d).

Denote by D a probabilistic distribution over X × Y.

Y Tao CMSC5724, CUHK

4/29

Classification

Goal: Given an object (x , y) drawn from D, we want to predict its
label y from its attribute values x [A1], ..., x [Ad].

We will find a function
h : X → Y

which is referred to as a classifier (sometimes also called a hypothesis).
Given an instance x , we predict its label as h(x).

The error of h on D — denoted as errD(h) — is defined as:

errD(h) = Pr (x,y)∼D[h(x) 6= y]

namely, if we draw an object (x , y) according to D, what is the
probability that h mis-predicts the label?

Y Tao CMSC5724, CUHK

5/29

Classification

Ideally, we want to find an h to minimize errD(h), but this in general is
not possible without the precise information about D.

Instead, We would like to learn a classifier h with small errD(h) from a
training set S where each object is drawn independently from D.

Y Tao CMSC5724, CUHK

6/29

Example: Suppose that we have the following training set:

age education occupation loan default
28 high school self-employed yes
32 master programmer no
33 undergrad lawyer yes
37 undergrad programmer no
40 undergrad self-employed yes
45 master self-employed no
48 high school programmer no
50 master laywer no
52 master programmer no
55 high school self-employed no

Now, given a new customer (50, high school, self-employed), how
should we predict whether s/he would default?

Y Tao CMSC5724, CUHK

7/29

The decision tree method represents a classifier h as a tree.

Example:

education

prog.

occupation

self-emp, lawyer

no

no

master

age

≤ 40 > 40

or above
undergrad
or below

yes no

Given an instance (50, high school, self-employed), the above tree
returns the class label “no” by descending a root-to-leaf path to
the rightmost leaf.

Y Tao CMSC5724, CUHK

8/29

Formally, a decision tree T is a binary tree where

each leaf node carries a class label: yes or no (namely, 1 or −1);

each internal node u has two child nodes, and carries a predicate Pu

on an attribute Au.

Given an instance x , T predicts its label as follows:

1 u ← the root of T .

2 If u is a leaf, return the class label associated with u.

3 If u is an internal node, check whether x [Au] satisfies Pu:

if so, u ← the left child of u;
otherwise, u ← the right child of u.

Our objective is to produce a good decision tree from the training
set S . Next, we will describe a simple algorithm called the Hunt’s
algorithm which achieves the purpose reasonably well in practice.

Y Tao CMSC5724, CUHK

9/29

Given a node u in T , define S(u) as follows:

If u is the root of T , S(u) = S .

Recursively, consider now u as an internal node whose S(u) has
been defined. Let v1, v2 be the left and right child nodes of u,
respectively.

S(v1) is the set of objects in S(u) that satisfy P(u);
S(v2) = S(u) \ S(v1).

Think: What is S(u) for each node u in the decision tree on
Slide 7?

Y Tao CMSC5724, CUHK

10/29

Hunt’s Algorithm

The algorithm builds a T in a top-down and greedy manner. At each
node u, it finds the “best” way to split S(u) according to a certain
quality metric.

algorithm Hunt(S)

/* S is the training set; the function returns the root of a decision tree */

1. if all the objects in S belong to the same class
2. return a leaf node with the value of this class
3. if all the objects in S have the same attribute values
4. return a leaf node whose class label is the majority one in S
5. find the “best” split attribute A∗ and predicate P∗ /* details next slide */
6. S1 ← the set of objects in S satisfying P∗; S2 ← S \ S1
7. u1 ← Hunt(S1); u2 ← Hunt(S2)
8. create a root u with left child u1 and right child u2
9. set Au ← A∗, and Pu ← P∗

10. return u

Y Tao CMSC5724, CUHK

11/29

Implementing Line 5 requires resolving the following issues:

1 What are the possible ways to perform a split?

2 How to evaluate the quality of a split?

We will provide a way to resolve these issues in the next few slides.

Y Tao CMSC5724, CUHK

12/29

Candidate Split

A split concerns a single attribute A. We distinguish two types of A:

Ordinal: there is an ordering on A.

Nominal: no ordering makes sense on A.

Example: In the training set of Slide 6, age and education are
ordinal attributes, whereas occupation is nominal.

Y Tao CMSC5724, CUHK

13/29

Candidate Split

For an ordinal attribute A, a candidate split is a condition of the form
A ≤ v , where v is a value of A appearing in S such that S has at least
one object satisfying the condition, and has at least one object that does
not.

For a nominal attribute A, a candidate split is be a condition of the
form A ∈ S , where S is a subset of the values of A appearing in S such
that S has at least one object satisfying the condition, and has at least
one object that does not.

Example: In the training set of Slide 6, “age ≤ 40”, “education
≤ undergrad”, and “occupation ∈ {self-employed, lawyer}” are all
candidate split predicates. But “age ≤ 41”, “age ≤ 55”, “educa-
tion ≤ elementary”, and “occupation ∈ {professor, lawyer}” are
not.

Y Tao CMSC5724, CUHK

14/29

Quality of a Split

Next, we tackle the second issue of Slide 11 by resorting to GINI index.

In general, let S be a set of objects whose class labels are known. Define:

n = |S |
ny = number of objects in S with label yes

py = ny/n

pn = 1− py

The GINI index of S is:

GINI (S) = 1− (p2y + p2n)

Y Tao CMSC5724, CUHK

15/29

Quality of a Split

Example:

If py = 1 and pn = 0 (i.e., maximum purity), then
GINI (R) = 0.

If py = 0.75 and pn = 0.25, then GINI (R) = 0.375.

If py = 0.5 and pn = 0.5 (i.e., maximum impurity), then
GINI (R) = 0.5.

It is rudimentary to verify:

Lemma: GINI (R) ranges from 0 to 0.5. It increases as |py − pn|
decreases.

Y Tao CMSC5724, CUHK

16/29

Quality of a Split

We are ready to resolve the second issue on Slide 11. Suppose that S has
been split into S1 and S2. We define the GINI index of the split as

GINIsplit =
|S1|
|S | GINI (S1) +

|S2|
|S | GINI (S2).

The smaller GINIsplit is, the better the split quality.

Y Tao CMSC5724, CUHK

17/29

At this point, we have completed the description of Hunt’s algorithm on
Slide 10. An important issue has been left out: overfitting, i.e., although
a tree may fit the training set well, its error on the distribution D is
actually rather bad.

Next, we will discuss understand what causes overfitting, and then fix the

issue by modifying the algorithm slightly.

Y Tao CMSC5724, CUHK

18/29

Let P be the set of people in the world. Given a random person, we want
to predict whether s/he drinks.

Suppose that there are no attributes (i.e., X = ∅). Given a training set

S ⊆ P, Hunt’s algorithm returns a decision tree T that has only a single

node (i.e., a leaf). Let c be the label at that leaf; clearly, T will predict

the label of every person in P as c .

Y Tao CMSC5724, CUHK

19/29

Which value of c is ideal for P? This depends on how many people in P
belong to the yes class. Specifically, let

πy =
number of people in P of yes

|P|

πn =
number of people in P of no

|P|

The optimal choice is to set c to yes if πy > πn, or to no otherwise.

Example: Suppose πy = 0.7 and πn = 0.3. If c = yes, we err with
probability 0.3; if c = no, we err with probability 0.7.

Y Tao CMSC5724, CUHK

20/29

However, πy and πn are unknown.

We rely on S to guess the relationship between πy and πn. If S
has more yes objects, we guess πy > πn and, hence, set c to yes;
otherwise, we set c to no. This is precisely what Hunt’s algorithm
does.

How to make sure we obtain a good guess? Obviously we need S
to be sufficiently large.

Without enough training data, you should not hope to build a reliable

decision tree (lack of statistical significance).

Y Tao CMSC5724, CUHK

21/29

As Hunt’s algorithm builds a decision tree T , the |S(u)| of the
current node u continuously decreases as we go deeper. When
|S(u)| becomes too small, statistical significance is lost such that
the subtree of u becomes unreliable: even though the subtree may
fit the training set well, it does not accurately predict the label of
an unknown object falling into the subtree. Therefore, overfitting
occurs.

Y Tao CMSC5724, CUHK

22/29

Hunt’s Algorithm (Modified)

We now add a heuristic to the algorithm to alleviate overfitting.

algorithm Hunt(S)

/* S is the training set; the function returns the root of a decision tree */

1. if all the objects in S belong to the same class
2. return a leaf node with the value of this class
3. if (all the objects in S have the same attribute values)

or (|S | is too small)
4. return a leaf node whose class value is the majority one in S
5. find the “best” split attribute A∗ and predicate P∗

6. S1 ← the set of objects in R satisfying P∗; S2 ← S \ S1
7. u1 ← Hunt(R1); u2 ← Hunt(R2)
8. create a root u with left child u1 and right child u2
9. set Au ← A∗, and Pu ← P∗

10. return u

Y Tao CMSC5724, CUHK

23/29

Next, we will provide a theoretical explanation about overfitting.

Given a classifier h, define its error on S — denote as errS(h) — to be:

errS(h) =
|{(x , y) ∈ S | h(x) 6= y}|

|S | .

namely, the percentage of objects in S whose labels are incorrectly
predicted by h.

Remark:

errS(h) is often called the empirical error of h.

errD(h) is often called the generalization error of h.

Y Tao CMSC5724, CUHK

24/29

Generalization Theorem

Theorem: Let H be the set of classifiers that can possibly be
returned. The following statement holds with probability at least
1− δ (where 0 < δ ≤ 1): for any h ∈ H:

errD(h) ≤ errS(h) +

√
ln(1/δ) + ln |H|

2|S | .

Implications: we should

look for a decision tree that is both accurate on the training set and
small in size;

increase the size of S as much as possible.

Y Tao CMSC5724, CUHK

25/29

To prove the generalization theorem, we need:

Theorem (Hoeffding Bounds): Let X1, ...,Xn be independent
Bernoulli random variables satisfying Pr [Xi = 1] = p for all i ∈
[1, n]. Set s =

∑n
i=1 Xi . Then, for any 0 ≤ α ≤ 1:

Pr [s/n > p + α] ≤ e−2nα
2

Pr [s/n < p − α] ≤ e−2nα
2

.

The proof of the theorem is beyond the scope of this course.

Y Tao CMSC5724, CUHK

26/29

We will also need:

Lemma (Union Bound): Let E1, ...,En be n arbitrary events such
that event Ei happens with probability pi . Then,

Pr [at least one of E1, ..., En happens] ≤
n∑

i=1

pi .

The proof is rudimentary and left to you.

Y Tao CMSC5724, CUHK

27/29

Proof of the Generalization Theorem

Fix any classifier h ∈ H.

Let S be the training set; set n = |S |. For each i ∈ [1, n], define Xi = 1 if
the i-th object in S is incorrectly predicted by h, or 0 otherwise. Hence:

errS(h) =
1

n

n∑
i=1

Xi .

Y Tao CMSC5724, CUHK

28/29

Proof of the Generalization Theorem

Since each object in S is drawn from D independently, for every i ∈ [1, n]:

Pr [Xi = 1] = errD(h).

By the Hoeffding bounds, we have:

Pr [errS(h) < errD(h)− α] ≤ e−2nα
2

which is at most δ/|H| by setting e−2nα
2

= δ/|H|, namely

α =

√
ln(1/δ) + ln |H|

2n
.

We say that h fails if errS(h) < errD(h)− α.

Y Tao CMSC5724, CUHK

29/29

Proof of the Generalization Theorem

The above analysis shows that each classifier in H fails with probability
at most δ/|H|. By the Union Bound, the probability that at least one
classifier in H fails is at most δ. Hence, the probability that no classifiers
fail is at least 1− δ.

Our proof did not use any properties from decision trees. Indeed,
the generalization theorem holds for any type of classifiers.

Y Tao CMSC5724, CUHK

