Bayesian Classification

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/28

Y Tao Bayesian Classification



(Review: CIassification)

Let Ay, ..., Ay be d attributes.

Instance space: X' = dom(A;) x dom(Ay) x ... x dom(Ay) where
dom(A;) represents the set of possible values on A;.

Label space: )V = {—1,1} (where —1 and 1 are class labels).
Instance-label pair (a.k.a. object): a pair (x,y) in X x ).

@ x is a vector; we use x[A;] to represent the vector's value on A;
(1<i<d).

Denote by D a probabilistic distribution over X x ).
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(Review: Classification)

Goal: Given an object (x,y) drawn from D, we want to predict its
label y from its attribute values x[A4], ..., x[Aq4].

Classifier (hypothesis): A function h: X — ).

Error of h on D: errp(h) = Pr(, ,~plh(x) # y].
namely, if we draw an object (x, y) according to D, what is the
probability that h mis-predicts the label?

We would like to learn a classifier h with small errp(h) from a training
set S where each object is drawn independently from D.
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(The Ideal Classifier)

Fix a point p in the instance space. Think: given a class label c € ),
how would you interpret the conditional probability

Pr(x’y)ND[y =c|x=p]|?

Design a classifier hop: as follows:
@ hopt(p) = —1if Prix yoply = =1| x = p] > 0.5;
@ hope(p) = 1 otherwise.

This is the best classifier possible.

Its error on D, namely, errp(hqpt), is the bayesian error.
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We will introduce the Bayesian method, which aims to follow the
decisions of hep: by approximating the value of Pr, ). ply = c |
x = pJ.

Henceforth, we will abbreviate Pr(, ,.p[y = c | x = p] simply as
Prly = c| p].
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Example: Suppose that we have the following traning set:
age | education | occupation | loan default
28 | high school | self-employed yes
32 master programmer no
33 undergrad programmer yes
37 undergrad programmer no
38 undergrad | self-employed yes
45 master self-employed no
48 | high school | programmer no
50 master laywer no
52 master programmer no
55 | high school | self-employed no
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Bayesian classification works most effectively when each attribute
has a small domain, namely, the attribute has only a small number
of possible values. When an attribute has a large domain, we may
reduce its domain size through discretization.

For example, we may discretize the “age” attribute into a smaller
domain: {20%, 30™, 40™, 50"}, where “20%" corresponds to the interval
[20,29], “30™"" to [30,39], and so on. See the next slide for the training
set after the conversion.
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Example: The training set after discretizing “age”:
age | education | occupation | loan default
20" | high school | self-employed yes
307" master programmer no
30" | undergrad programmer yes
30" | undergrad | programmer no
30" | undergrad | self-employed yes
40" master self-employed no
407" | high school | programmer no
50" master laywer no
507" master programmer no
50" | high school | self-employed no
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Bayes’ Theorem:

Pr[Y | X]- Pr[X]
PrlY]

PrIX | Y] =
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Given an instance x, (as in hop) we predict its label as —1 if and only if
Prly=-1|x] > Prly=1]x].
Applying Bayes' theorem, we get:

Prix|y =1]-Prly =1]

Priy =1| x] = Prlx

Similarly:

Prix |y = —1]- Prly = —1]
Pr[x] |

Prly=—-1]|x] =

It suffices to decide which of the following is larger:
@ Prix|y=1]-Prly =1], or
@ Prix|y=-1]- Prly = —1].
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Bayesian classification estimates Pr[x | y = 1] - Pr[y = 1] and
Pr[x | y = —1] - Pr[y = —1] using the training set. Next, we will explain
only the former, because the estimate of the latter is similar.

The objective, obviously, is to estimate two terms:
o Prly =1]
@ Prix|y=1]

We will discuss each term in turn.
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Prly = 1]
This is the probability for an object drawn from D to have label 1.

Naturally, we estimate Pr[y = 1] as the percentage of yes objects in the
training set S.

Example: In Slide 8, Pr[y = 1] = 0.3.
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Prix |y =1]

This is the probability for a “yes”-object drawn from D to carry exactly
the attribute values x[A4], ..., x[Ad]-

We could estimate Pr[x | y = 1] as the percentage of objects having
attribute values x[A1], ..., x[A4] among all the yes objects in S. But this
is a bad idea because S may have very few (even none) such objects,
rendering the estimate unreliable (losing statistical significance).

This situation forces us to introduce assumptions which — if satisfied —
would allow us to obtain a more reliable estimate of Pr[x | y = 1].

13/28

Y Tao Bayesian Classification



Pr[x | y = 1] (cont.)

Bayesian classification makes an assumption here:
d
Prix|y=1] = [[PrixIA]ly=1]
i=1

For each i € [1, d], we estimate Pr[x[A;] | y = 1] as the percentage of
objects with attribute value x[A;] among all the yes objects in S.

Example: In Slide 8, Pr[30+,high-school, programmer | y = 1]
is assumed to be the product of

@ Pr[30+ | y = 1], which is estimated as 2/3
@ Prlhigh-school | y = 1], which is estimated as 1/3
@ Pr[programmer | y = 1], which is estimated as 1/3.

The product equals 2/27.
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Pr[x | y = 1] (cont.)

The estimate of Pr[x[A;] | y = 1] would be 0 if S does not have any
yes-object with attribute value x[A;]. But that would force our estimate
of Pr[x |y = 1] to be 0. Instead, we replace the 0 estimate with a very
small value, for example, 0.000001.

Example: In Slide 8, Pr[lawyer | y = 1] is estimated as 0.000001.

Think: At the beginning, we said that Bayesian classification works
better on small domains. Why?

15/28

Y Tao Bayesian Classification



The effectiveness of Bayesian classification relies on the accuracy of the
assumption:

d
Prix|y=1 = []Prix[A]ly=1].
i=1

This assumption is called the conditional independence assumption.
When this assumption is seriously violated, the accuracy of the method
drops significantly.
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The approach we have discussed so far is known as naive Bayes
classification.

The approach can be integrated with alternative (less stringent)
conditional independence assumption. Consider the evaluation of

Pr[30+, undergrad, programmer | y = —1]

in the context of Slide 8. Suppose that “age” and “education” are
independent after fixing “occupation” and the class label. Then:

Pr[30+, undergrad, programmer | y = —1]
= Pr[30+, undergrad | programmer, y = —1] -
Pr[programmer | y = —1]
= Pr[30+ | programmer, y = —1]
-Pr[undergrad | programmer, y = —1]

-Pr[programmer | y = —1]
- 2.2 —1/14.
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Next, we will provide an alternative way to describe the Bayes
method (using naive Bayes as an example). Our description will
clarify what is actually the set # of classifiers to be learned from.
This allows you to apply the generalization theorem (discussed in
the previous lecture) to bound the generalization error of the clas-
sifier obtained.
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Recall that we have attributes Ay, ..., Aqg.
We assume that each A; (i € [1,d]) has a finite domain dom(A;).

For each A;, we introduce 2|dom(A;)| parameters. Specifically, for each
value a € dom(A;), there are two parameters:

@ pi(a| —1), which is our estimate of Pr[x[A]=a|y = —1];

@ pi(a| 1), which is our estimate of Pr[x[A]] =a |y =1].
Furthermore, we also introduce:

@ p(—1), which is our estimate of Pr[y = —1];

@ p(1), which is our estimate of Pr[y = 1].

In total, we have 2 + 2 Z,(-jzl |dom(A;)| parameters.
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Once the values of the 2 + 22?:1 |dom(A;)| parameters have been fixed,
the conditional independence assumption (of naive Bayes) gives rise to
the following classifier h(x):

o h(x)=-1if
d d
p(-1)- HPi(X[Ai] | =1) > p(1)- HPi(X[Ai] 1)
i=1 i=1
@ h(x) =1 otherwise.

The set H contains all such classifiers.

Remark: The Bayes method we explained earlier gives an efficient
way for choosing a reasonably good classifier h € H.
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Next, we introduce the Bayesian network which is a popular way
to describe sophisticated conditional independence assumptions.

Let us review some concepts on acyclic directed graphs (DAG):
@ A DAG G is a directed graph with no cycles.

@ A node in G with 0 in-degree is a root. Note that G may have
multiple roots.

@ If a node v has an edge to another node v, then v is a parent of v.
Note that a node can have multiple parents.

We will use parents(v) to represent the set of parents of a node v.
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We define a Bayesian network as an acyclic directed graph (DAG) G
satisfying:

@ G has d + 1 nodes, including a node for the class label and a node
for each attribute;

@ G has a single root node, which must be the class label;

© if attribute u has no path to any of the attributes v1, ..., v, (where
x > 1 can be any integer), then u and (vi, ..., vx) are independent
conditioned on parents(u).

Example: The following is a Bayesian network with d = 5.

@ A; and A; independent conditioned on y;

e @ A, and As independent conditioned on

@ @ A1, Az;

/ @ A3 and As independent conditioned on Ay;
(4)  (4) @ Asand (y,As) independent conditioned on
As.
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Theorem 1: Given the conditional independence assumptions de-
scribed by a Bayesian network G, we have

d
Pr(Ay, ..., Aq | y] = ] PrlAi | parents(A)].
i=1

Before proving the theorem, let us first see an example.

Example: Given the Bayesian network on the previous slide, we
have:

Pr[Al,Ag, ...,A5 ‘ y] =
Pr[A; | y] - Pr[Ay | y] - Pr[As | Ai] - Pr[As | Ay, Ay] - Pr[As | Ay, Ao
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We will now proceed to prove the theorem. The following facts about
conditional independence will be useful:

Lemma 1: If A and B are independent conditioned on C, then:
@ Pr[A,B| C]l=Pr[A| C]- Pr[B| C];
@ Pr[A| C,B] = Pr[A| C].

Proof: The first bullet is the definition of conditional independence,
whereas the second bullet holds because

PrlA, B | C]
Pr[B | C]

PriA| CIPrB| C]
pis e~ PrALC

Pr[A| C, B]
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Proof of Theorem 1: Without loss of generality, suppose that y, Ay, ...,
A4 is a topological order of G (namely, no path exists from a vertex u to
any vertex before u).

PriAi, ..., Aqly]l = Pr{Ay,.. Aqly, Al Pr[A;|y]
= Pr{As,...,Aq| y,A1, As] - Pr[Az | y, Al] - Pr[A; | y]

Pr[Ai | )/aAlv "'7Ai71]

(by Lemma 1) = Pr[A; | parents(A;)]

d
i=1
d
i=1
where the last equality used the conditional-independence properties

implied by G and the fact that parents(A;) C {y, A1, ..., Ai—1}. O
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Example: Consider the training set on Slide 8. If we are given the
Bayesian network

then Pr[30+, undergrad, programmer | y = —1] is calculated as
shown on Slide 17.
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Example (cont.): If the Bayesian network is

®

then Pr[30+, undergrad, programmer | y = —1]

= Pr[30+, undergrad | programmer, y = —1] -
Pr[programmer | y = —1]
= Pr[30+ | programmer] - Pr[undergrad | programmer]

-Pr[programmer | y = —1]
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Think: What is the set # of classifiers to be learned from if we
are given the Bayesian network on the previous slide?
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