CMSC5724: Exercise List 6

Problem 1. Prove the theorem on Slide 6 of the lecture notes on the kernel method without the interleaving assumption.

Problem 2. Consider the kernel function $K(p,q) = (\mathbf{p} \cdot \mathbf{q} + 1)^3$, where $\mathbf{p} = (p[1], p[2])$ and $\mathbf{q} = (q[1], q[2])$ are 2-dimensional vectors. Recall that there is a mapping function ϕ from \mathbb{R}^2 to \mathbb{R}^d for some integer d such that K(p,q) equals the dot product of $\phi(p)$ and $\phi(q)$. Give the details of ϕ .

Problem 3. Consider a set P of 2D points each labeled either -1 or 1. It is known that the points of the two labels can be linearly separated after applying the Kernel function $K(p,q) = (\mathbf{p} \cdot \mathbf{q} + 1)^2$. Prove that they can also be linearly separated by applying the kernel function $K'(p,q) = (2\mathbf{p} \cdot \mathbf{q} + 3)^2$.

Problem 4. Consider a set P of 2D points that has three label-1 points $p_1(-2, -2)$, $p_2(1, 1)$, $p_3(3, 3)$, and two label-(-1) points $q_1(-2, 2)$, $q_2(2, -2)$. Answer the following questions:

- Use Perceptron to find a separation plane π using the Kernel function $K(x, y) = (x \cdot y + 1)^2$.
- According to π , what is the label of point (2,2)?

Problem 5. Same settings as in Problem 3. Calculate the distance from $\phi(p_1)$ to the separation plane you find in the feature space.

Problem 6. Let P be a set of points in \mathbb{R}^d . Prove: the Gaussian kernel produces a kernel space where every point $p \in P$ is mapped to a point $\phi(p)$ satisfying $|\phi(p)| = 1$, namely, $\phi(p)$ is on the surface of an infinite-dimensional sphere.

Problem 7. For any a *d*-dimensional sphere centered at the origin of \mathbb{R}^d , we know that any set of d+1 points on the sphere's surface can be shattered by the set of linear classifiers. Use this fact to prove that any finite set P of points in \mathbb{R}^d can be linearly separated in the kernel space produced by the Gaussian kernel. (Hint: use the conclusion of Problem 6 and use the fact that the Gaussian kernel produces a kernel space of infinite dimensionality.)