CMSC5724: Exercise List 6

Problem 1. Prove the theorem on Slide 6 of the lecture notes on the kernel method without the
interleaving assumption.

Answer: Sort the input P and divide it into mazimal subsets such that the points in each subset
are consecutive and share the same label. Denote the subsets as S1, Ss, ..., S; in ascending order (for
some [ > 1). For example, suppose P has points pi, pa, ..., p1op where po, p3, and ps have label 1, and
the other points label —1. Then, [ = 3; and S1 = {p1}, S2 = {p2,p3,p4}, and S3 = {ps, ps, ---, P10}

We will assume that the points in S7 have label —1 and that [ is an odd number. Find a point
g; for each i € [1,1 — 1] such that ¢; is larger than the points in S; but smaller than those in S;;.
Construct a function:

flx)=—(z - @)@ - q)...(z — q-1). (1)

For an odd i, f(p) < 0 for all p € S;. For an even ¢, f(p) > 0 for all p € S;. The rest of the proof
proceeds as discussed in the lecture.

Problem 2. Consider the kernel function K(p,q) = (p-q + 1)?, where p = (p[1],p[2]) and
q = (q[1], q[2]) are 2-dimensional vectors. Recall that there is a mapping function ¢ from R? to R?
for some integer d such that K (p,q) equals the dot product of ¢(p) and ¢(g). Give the details of ¢.

Answer: Rewrite K as dot product form.

K(p,q) = (p[lq[1] + p[2]q[2] + 1)°
= p[11%q[1]* + p[2]°q[2)° + 1 + 3p[1]q[1]p[2]*q[2]?

+ 3p[1]2q[1]%p[2]q[2] + 3p[1]q[1] + 3p[1]%q[1]* + 3p[2]q[2] + 3p[2]*q[2]* + 6p[1]q[1]p[2]q[2]
= (p[11%,p[2)°, 1, V3p[1]p[2]*, V3p[1]*p[2], V/3p[1], V3p[2], V3p[1]*, V3p[2]*, V6p[1]p[2])

(q[11%, q[21%,1, V3q[1]q[2]?, vV3q[1]%[2], V3q[1], V3q[2], V3q[1]%, v/3q[2]?, V/6q[1]q[2])
Therefore, ¢(z) = (2[1)3, 2[2]3, 1, V3z[1]z[2)%, V32 [1]22[2], v/3z[1], v3z[2], v3z[1]?, V32[2]2, V62 [1]2[2]).

Problem 3. Consider a set P of 2D points each labeled either —1 or 1. It is known that the points
of the two labels can be linearly separated after applying the Kernel function K (p,q) = (p-q + 1)
Prove that they can also be linearly separated by applying the kernel function K'(p, q) = (2p-q+3)2.

Answer: Using the method explained in Problem 1, we can find the mapping functions ¢ and ¢’
for K and K’, respectively:

¢(p) = (p[11%, p[2]%, 1, V2p[1], V2p[2], V2p[1]p[2])
¢'(p) = (2p[1]%,2p[2]%, 3,2V/3p[1], 2V/3p[2], 2v/3p[1]p[2)).
Let m be the plane that separates the points under ¢. If w - ¢(z) = 0 is the equation for 7, then (i)

for every point p of label 1, w - ¢(p) > 0, and (ii) for every point p of label —1, w - ¢(p) < 0.

wii] w2 wh] wll] wl] w[g} ). Let 7’ be the plane given by the equation w’- ¢'(z) = 0.



We claim that 7’ also separates the points. Indeed, for every point p of label 1, we have:

w' - ¢/ (p)
_ w(l] 5 w[2] w3 w(4] wl5] w|6]
_4?~%m]+—572p]+—?73+:E—mf[]+zf—mf[]+:7—mf[]u
= w[l] - p[1]? +'w{2] P2 + w(3] + V2w4] - p[1] + V2w[5] - p[2] + v2w[6] - p[1]p[2]

w - 4(p) >

Likewise, we can prove that, for every point p of label —1, it holds that w’ - ¢'(p) = w - ¢(p) < 0

Problem 4. Consider a set P of 2D points that has three label-1 points p1(—2, —2), p2(1,1), p3(3, 3),
and two label-(—1) points ¢1(—2,2), ¢2(2, —2). Answer the following questions:

e Use Perceptron to find a separation plane 7 using the Kernel function K (z,y) = (- y + 1)%.

e According to m, what is the label of point (2,2)?

Answer: Initially, let wg = 0. Perceptron runs as follows:
Iteration 1. Since wq - ¢(p1) = 0, we set w1 = wo + @(p1) = ¢(p1).

Iteration 2. Since w1 - ¢(q1) = K(p1,q1) =1 > 0, we set we = w1 — ¢(q1) = é(p1) — o(q1).

Iteration 3. There are no more violations for ws. So we have found a separation plane ws - ¢(x) = 0
such that (i) ws - ¢(x) > 0 for every label-1 point p, and (ii) ws - ¢(z) < 0 for every label-(—1) point
p.

Now consider the point r = (2,2). As wy - ¢(r) = K(p1,7) — K(q1,7) = 48 > 0, we classify r as
label 1.

Problem 5. Same settings as in Problem 3. Calculate the distance from ¢(p;) to the separation
plane you find in the feature space.

Answer: We know from the solution of Problem 3 that the weight vector of the separation plane
(in the feature space) is w = ¢(p1) — ¢(q1).

The distance from ¢(p;) to this plane equals
w-p(p1)  w-o(p)

w|  Vwew
(o(p1) — d(q1)) - (1)
V(@(p1) — (@) - (o(p1) — ¢(q1))
o(p1) - d(p1) — ¢(p1) - ¢(q1)
V1) - o(p1) —26(p1) - (q1) + ¢(qr) - d(aq1)
K(p1,p1) — K(p1,q1)
VE(p1,p1) —2K(p1,q1) + K(q1,q1)
81—1
VeI —2x1+81
= 80//160.




Problem 6. Let P be a set of points in R?. Prove: the Gaussian kernel produces a kernel space
where every point p € P is mapped to a point ¢(p) satisfying |¢(p)| = 1, namely, ¢(p) is on the
surface of an infinite-dimensional sphere.

dist(p,q)*
202 )

in the kernel space, The distance of ¢(p) to the origin is \/¢(p) - ¢(p), which equals

Answer: A Gaussian kernel has the form K (p,q) = exp(— where p and ¢ are points in R?.

VEK(p,p) = \/exp(W) = /exp(0) = 1.

Problem 7. For any a d-dimensional sphere centered at the origin of R¢, we know that any set of
d 4 1 points on the sphere’s surface can be shattered by the set of linear classifiers. Use this fact to
prove that any finite set P of points in R% can be linearly separated in the kernel space produced by
the Gaussian kernel. (Hint: use the conclusion of Problem 6 and use the fact that the Gaussian
kernel produces a kernel space of infinite dimensionality.)

Answer: By the given fact that any d + 1 points on a sphere’s surface can be shattered, we know:

Fact 1: For any d-dimensional sphere centered at the origin of R? and any set S of n
points on the sphere such that d > n — 1, S can be shattered by the set of d-dimensional
linear classifiers.

By the conclusion of Problem 6, every point p € P is mapped into a point ¢(p) on the surface of
an infinite-dimensional sphere centering at the origin. The claim in Problem 7 then follows directly
from Fact 1 and Problem 6.



