CMSC5724: Exercise List 4

Problem 1. A rectangular classifier h in \mathbb{R}^2 is described by an axis-parallel rectangle $r = [x_1, x_2] \times [y_1, y_2]$. Given a point $p \in \mathbb{R}^2$, h(p) equals 1 if p is covered by r, or -1 otherwise. Give a set of 4 points \mathbb{R}^2 that can be shattered by h.

Solution. A = (0, 1), B = (1, 0), C = (-1, 0), D = (0, -1).

Problem 2. A rectangular classifier h in \mathbb{R}^2 is described by an axis-parallel rectangle $r = [x_1, x_2] \times [y_1, y_2]$. Given a point $p \in \mathbb{R}^2$, h(p) equals 1 if p is covered by r, or -1 otherwise. Prove: there does not exist any set of 5 points in \mathbb{R}^2 that can be shattered by h.

Solution. Given any set of 5 points P in \mathbb{R}^2 , build a set of points S as follows.

- Initially, S is empty.
- Add to S a point in P with the minimum x-coordinate.
- Add to S a point in P with the maximum x-coordinate.
- Add to S a point in P with the minimum y-coordinate.
- Add to S a point in P with the maximum y-coordinate.

Note that the size of S is at most 4.

Any axis-parallel rectangle covering S must cover the entire P and, hence, must also cover all the points in $P \setminus S$. Consider the label assignment where the points in S have label 1, and those in $P \setminus S$ have label -1. No rectangle classifier can return these labels.

Problem 3. Let \mathcal{P} be a set of points in \mathbb{R}^d for some integer d > 0. Let \mathcal{H} be a set of classifiers each of which maps \mathbb{R}^d to $\{-1, 1\}$. Prove: for any $\mathcal{H}' \subseteq \mathcal{H}$, it holds that VC-dim $(\mathcal{P}, \mathcal{H}') \leq$ VC-dim $(\mathcal{P}, \mathcal{H})$.

Solution. Let $\lambda = \text{VC-dim}(\mathcal{P}, \mathcal{H})$. It suffices to prove that \mathcal{P} does not contain a subset P of size $\lambda + 1$ that can be shattered by \mathcal{H}' . This is obvious because such a P can be shattered by \mathcal{H} as well, which contradicts $\text{VC-dim}(\mathcal{P}, \mathcal{H}) = \lambda$.

Problem 4*. In this problem, we will see that deciding *whether* a set of points is linearly separable can be cast as an instance of linear programming.

In the *linear programming* (LP) problem, we are given n constraints of the form:

$$\boldsymbol{\alpha}_i \cdot \boldsymbol{x} \ge 0$$

where $i \in [1, n]$, α_i is a constant *d*-dimensional vector (i.e., α_i is explicitly given), and \boldsymbol{x} is a *d*-dimensional vector we search for. Let $\boldsymbol{\beta}$ be another constant *d*-dimensional vector. Denote by *S* the set of vectors \boldsymbol{x} satisfying all the *n* constraints. The objective is to

- either find the best $x \in S$ that maximizes the *objective function* $\beta \cdot x$ in this case we say that the LP instance is *feasible*;
- or declare that S is empty in this case we say that the instance is *infeasible*.

Suppose that we have an algorithm \mathcal{A} for solving LP in at most f(n, d) time. Let P be a set of n points in \mathbb{R}^d , each given a label that is either 1 or -1. Explain how to use \mathcal{A} to decide in O(nd) + f(n, d+1) time whether P is linearly separable, i.e., whether there exists a vector \boldsymbol{w} such that:

- $\boldsymbol{w} \cdot \boldsymbol{p} > 0$ for each $\boldsymbol{p} \in P$ of label 1;
- $\boldsymbol{w} \cdot \boldsymbol{p} < 0$ for each $\boldsymbol{p} \in P$ of label -1.

Note that the inequalities in the above two bullets are strict, while the inequality in LP involves equality.

Solution. Construct an instance of (d + 1)-dimensional LP as follows. For each $p \in P$ with label 1, create a constraint

 $\boldsymbol{p}\cdot\boldsymbol{x}\geq t$

and for each point $p \in P$ with label -1, create:

$$oldsymbol{p}\cdotoldsymbol{x}\leq -t$$

We want to find \boldsymbol{x} and t to satisfy all the n constraints, and in the meantime, maximize t.

To see that this is indeed a (d+1)-dimensional LP, define \boldsymbol{y} as the (d+1)-dimensional vector that concatenates \boldsymbol{x} and -t, namely, the first d components of \boldsymbol{y} constitute \boldsymbol{x} , and the last component of \boldsymbol{y} is -t. Accordingly, for each point $\boldsymbol{p} \in P$ of label 1, define $\boldsymbol{p'}$ as the concatenation of \boldsymbol{p} and 1; for each point $\boldsymbol{p} \in P$ of label -1, define $\boldsymbol{p'}$ as the concatenation of \boldsymbol{p} and -1. Then, the constraint of a label-1 point \boldsymbol{p} can be rewritten as

$$p' \cdot y \ge 0$$

while that of a label-(-1) point p as

$$p' \cdot y \leq 0.$$

The objective is to maximize $(0, ..., 0, -1) \cdot \boldsymbol{y} = t$.

The above LP instance can be constructed in O(nd) time. We now deploy the algorithm \mathcal{A} to solve the instance in f(n, d+1) time. Let t^* be the returned value for the objective function (note that the instance is always feasible). If t > 0, we claim that P is linearly separable; otherwise, we claim that P is not.