Table Definition and Modification

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

create table [table name] (
 [attribute definition], ..., [attribute definition],
 [primary key definition],
 [candidate key definition], ..., [candidate key definition],
 [foreign key definition], ..., [foreign key definition])

[attribute name] [attribute type]

where the attribute type can be:

- integer
- char(n) where n is an integer of your choice. This defines a string with at most n characters long.
- other types that depend on the concrete database system. In this course, we will work with the above types only.

```
create table PROF (
pid char(20),
name char(20),
dept char(20),
rank char(20),
sal integer)
```

primary key ([attribute list])

A primary key functions in the same way as a candidate key, except that every table should have exactly one primary key.

```
create table PROF (
pid char(20), name char(20), dept char(20), rank char(20), sal integer,
primary key (pid))
```

```
unique ([attribute list])
```

You can define as many candidate keys as you want.

```
create table PROF (
    pid char(20), name char(20), dept char(20), rank char(20), sal integer,
    primary key (pid),
    unique (name),
    unique (dept, rank))
```

foreign key ([attribute list]) references [table name]

The attributes in the attribute list must have the same types as those in the primary key in the table referenced.

```
create table PROF (
```

pid char(20), name char(20), dept char(20), rank char(20), sal integer, primary key (pid))

```
create table TEACH (
pid char(20), cid char(20), year integer
primary key (pid, cid),
foreign key (pid) references PROF)
```

The statement in the previous slide does not allow the deletion of a tuple in PROF if it is references by a tuple in TEACH.

Example:

PROF

TEACH

\mathbf{pid}	name	dept	rank	sal	
p1	Adam	CS	asst	6000	
p2	Bob	EE	asso	8000	
p3	Calvin	CS	full	10000	
p4	Dorothy	EE	asst	5000	
p5	Emily	EE	asso	8500	

\mathbf{pid}	cid	year		
p1	<i>c</i> 1	2011		
p2	<i>c</i> 2	2012		
p1	c2	2012		

The first two tuples of PROF cannot be deleted.

foreign key ([attribute list]) references [table name] on delete cascade

If a referenced tuple is deleted, so are all the referencing tuples.

```
create table PROF (
pid char(20), name char(20), dept char(20), rank char(20), sal integer,
primary key (pid))
```

create table TEACH (pid char(20), cid char(20), year integer primary key (pid, cid), foreign key (pid) references PROF on delete cascade)

Example:

					1 EAU II			
pid	name	dept	rank	sal		pid	cid	vear
p1	Adam	CS	asst	6000		più	Ciu	v
^						p1	c1	2011
p2	Bob	\mathbf{EE}	asso	8000		- 0	.0	0010
p3	Calvin	CS	full	10000		p2	c2	2012
p_{3}	Carvin	05	Tun	10000	-	p1	c2	2012
p4	Dorothy	\mathbf{EE}	asst	5000		P^{\perp}	02	2012
p5	Emily	EE	asso	8500				

PROF

If the first tuple of PROF is deleted, so are the first and third tuples of TEACH.

TEACH

æ

insert into [table name] values ([value 1], [value 2], ...)

Example:

insert into PROF values ('p1', 'Adam', 'CS', 'asst', 6000)

delete from T where P

- T is a table name
- *P* is a predicate (same as a predicate in the where clause of an SQL statement)

The statement removes all the tuples of T that satisfy P.

Example:

delete from PROF where salary <= 5000

update T set A = v where P

- T is a table name
- A is an attribute and v is the new value of the attribute
- P is a predicate

The statement updates the A values to v for all the tuples of T that satisfy P.

Example:

update PROF set salary = 6000 where salary = 5000

update PROF set salary = salary * 1.05 where salary ≤ 6000